

КАТАЛОГ ПРОДУКЦИИ

КОМПАНИЯ «НОВЫЕ ИНСТРУМЕНТАЛЬНЫЕ РЕШЕНИЯ» - ЭТО ПРОИЗВОДСТВО СТАНДАРТНОГО И СПЕЦИАЛЬНОГО МЕТАЛЛОРЕЖУЩЕГО ОСЕВОГО ТВЕРДОСПЛАВНОГО ИНСТРУМЕНТА С PVD-ПОКРЫТИЕМ, ОСНАЩЕННОЕ СОВРЕМЕННЫМ ОБОРУДОВАНИЕМ.

ПРОДУКЦИЯ И УСЛУГИ

1. Осевой твердосплавный монолитный инструмент

Nº	продукі	ция	стр.	Nº	продуки	рия киј	стр.	Nº	продуки	рия виј	стр.
1	Фрезы монолитные	888	27	5	Токарный инструмент	lili	460	10	Мелкоразмерный инструмент		648
	Фасочные	71	402	6	Сверла		495	11	Гравировальные фрезы		668
2	и Т-образные фрезы	11	403	7	Зенкера	111	587	10	Фрезы для	5	670
3	Фрезерные головки	9 9	420	8	Развертки	=	605	12	алюминиевого профиля		679
4	Борфрезы	1	446	9	Резьбонарезной инструмент	1111	613	13	Справочная информация	VI	685

- **2.** Восстановление осевого монолитного твердосплавного инструмента любого производителя. Восстановление включает: переточку, нанесение покрытия.
- 3. Нанесение методом PVD различных видов износостойких и упрочняющих покрытий, в т.ч. наноструктурированных, на инструмент и изделия заказчика.
- **4.** Изготовление специального осевого монолитного твердосплавного инструмента под задачи клиента.

Мы подберем материал заготовки, геометрию, тип покрытия инструмента согласно обрабатываемому материалу, виду обработки и оборудованию в оптимальные для

СОДЕРЖАНИЕ

1. ФРЕЗЫ МОНОЛИТНЫЕ

Для станков с ПУ

				подбору инстру				резе	рова	ание										
									•		ываем	лый м	атериа	ал по І	SO					
					ı	•	N	Л	ı	(;	S			N			ŀ	1	
	Серия	Количество зубьев	Угол спирали	Диапазон размеров	į	Стали	Нержавеющие	стали	The state of the s	тугуны	Титановые и	жаропрочные сплавы	y	АЛЮМИНИИ	Медь, пластик		рринза, латунь	Твердые	материалы	Страница
	ප	Количест	Угол с	Диапазон	<35 HRC	35 HRC - 48 HRC	<35 HRC	35 HRC - 48 HRC	< 200 HB	> 200 HB	<850 МПа	850-1400 MПa	Кремний < 4%	4 % Кремний <12%		< 550 MNa	> 550 MNa	48 HRC - 57 HRC	57 HRC - 65 HRC	Стр
				06	работ	ка ал	юмини	іевых,	медн	ых спі	авов	и пла	стика							
\square	M152	3	30	5-25	+								++	+	++	++				28
\square	M154	2	45	3-25	+								++	+	++	++				42
\square	M156	3	45	3-25	+								++	+	++	++				60
\square	M148	4	45	3-25	+								+	++	+	++				78
0	M207	2	30	3-25	+								+	++	+	++				96
				Общее і	приме	нение	, обра	ботка і	матер	иалов	до тв	ердос	ти HR	C<35						
\square	M124	4	45	4-25	++	+	++	+	++	+	++	+					++			101
\square	M129	2	45	3-25	++	+	++	+	++	+	++	+					++			114
\square	M131	3	45	3-25	++	+	++	+	++	+	++	+					++			130
\square	M181	4	37	3-25	++	+	++	+	++	+	++	+					++			146
\square	M185	4	50	3-25	++	+	++	+	++	+	++	+					++			162
\square	M110	4	30	3-25	++	+	++	+	++	+	++	+					++			178
\square	M190	5	45	5-25	++	+	++	+	++	+	++	+					++			194
\square	M145	6	50	6-25	++	+	++	+	++	+	++	+					++			210
\square	M144	8	45	10-25	++	+	++	+	++	+	++	+					++			219
2	M212	2	30	3-25	++	+	++	+	++	+	++	+					++			222
2	M206	4	30	3-25	++	+	++	+	++	+	++	+					++			226
D	M582- M584	2-4	30	R1.5-R12.5	++	+	++	+	++	+	++	+					++			230
	M685- M687- M689	5-7-9	30	8-20	++	+	++	+	++	+	++	+					++			233

							4	резе	еров	ание										
									06	брабат	ываег	иый м	атери	ал по	ISO					
						P	١	M		K		S			N			- 1	Н	
	Серия	Количество зубьев	Угол спирали	Диапазон размеров		Стали	Непжавеющие	стали	:	Чугуны	Титановые и	жаропрочные сплавы	3	Алюминии	Медь, пластик		Бронза, латунь	Твердые	материалы	Страница
	ອິ	Количест	Угол с	Диапазон	<35 HRC	35 HRC - 48 HRC	<35 HRC	35 HRC - 48 HRC	< 200 HB	> 200 HB	<850 MITa	850-1400 МПа	Кремний < 4%	4 % Кремний < 12%		< 550 MNa	> 550 MNa	48 HRC - 57 HRC	57 HRC - 65 HRC	Стр
		0	брабо	тка конструкцио	нных	и нерх	кавен	щих с	талей	, чугун	іа, тит	ановь	іх и жа	аропро	учных	сплав	ОВ			
\overline{Z}	M122	4	37	4-25	+	++	+	++	+	++	+	++						+		239
<u>Z</u>	M128	2	30	3-25	+	++	+	++	+	++	+	++						+		254
\overline{Z}	M130	3	30	3-25	+	++	+	++	+	++	+	++						+		271
7	M182	4	37	3-25	+	++	+	++	+	++	+	++						+		287
22	M186	4	50	3-25	+	++	+	++	+	++	+	++						+		303
22	M136	4	30	3-25	+	++	+	++	+	++	+	++						+		318
24	M189	5	45	5-25	+	++	+	++	+	++	+	++						+		334
7	M142	6	45	6-25	+	++	+	++	+	++	+	++						+		349
2	M202	2	30	3-25	+	++	+	++	+	++	+	++						+		354
7	M209	4	30	3-25	+	++	+	++	+	++	+	++						+		358
D	M532- M534	2-4	30	R1.5-R12.5	+	++	+	++	+	++	+	++						+		362
D	M635- M637- M639	5-7-9	30	8-20	+	++	+	++	+	++	+	++						+		365
					Обра	ботка	зака	алённ	ых с	талеі	í 45<	HRC<	6 5							
73	M126	2	30	3-10		+		+				+						++	+	371
\overline{Z}	M157	4	30	3-25		+		+				+						++	+	375
7	M140	6-8	45	6-25		+		+				+						++	+	383
7	M214	2	30	3-10		+		+				+						++	+	388
<u></u>	M210	4	30	3-25		+		+				+						++	+	391
7	M143	6	45	6-25														+	++	394
$\overline{\overline{}}$	M146	6	20	6-25														+	++	399
\square	M211	6	30	6-25														+	++	401
+ /]опускает	ся		Рекомендуетс	a															

Для универсальных станков и станков с низкой жесткостью

						Ф	резе	рова	ание										
								06	рабат	ываем	иый ма	атериа	ал по І	SO					
					P	ı	VI	ı	(:	S			N			ı	1	
Серия	Количество зубьев	Угол спирали	Диапазон размеров	(Стали	Нержавеющие	стали	<u>.</u>	Ighy Iyr	Титановые и	жаропрочные сплавы	3	Алюминии	Медь, пластик		Dpunsa, Jiaiynb	Твердые	материалы	Страница
8	Количес	Угол	Диапазог	<35 HRC	35 HRC - 48 HRC	<35 HRC	35 HRC - 48 HRC	< 200 HB	> 200 HB	<850 МПа	850-1400 МПа	Кремний < 4%	4 % Кремний < 12%		< 550 MNa	> 550 MNa	48 HRC - 57 HRC	57 HRC - 65 HRC	g t 2
			Общее	приме	нение	, обра	ботка	матер	иалов	до тв	ердос	ти HR	C<35						
M154	2	45	3-25	+								++	++	++	++	+			42
M156	3	45	3-25	+								++	++	++	++	+			60
M148	4	45	3-25	+								++	++	++	++	+			78
M207	2	30	3-25	+								++	++	++	++	+			96
M124	4	45	4-25	++	++	++	++	++	++	++	++					++	++	+	101
M129	+ -	45	3-25																114
	2	-		++	++	++	++	++	++	++	++					++	++	+	
M131	3	45	3-25	++	++	++	++	++	++	++	++					++	++	+	130
	4	50	3-25	++	++	++	++	++	++	++	++					++	++	+	162
M185						++	++	++	++	++	++					++	++	+	178
M185 M110	4	30	3-25	++	++														
	4	30 50	3-25 6-25	++	++	++	++	++	++	++	++					++	++	+	210
M110							++	++	++	++	++					++	++	+	210 222

⁺ Допускается

⁺⁺ Рекомендуется

2. ФАСОННЫЕ ФРЕЗЫ

								резе	рова	ание										
									06	рабат	ываем	лый ма	атериа	ал по І	SO					
					ı	P	N	VI	ı	K	;	S			N			ı	1	
	Серия	Количество зубьев	Угол спирали	Диапазон размеров	ć	Стали	Нержавеющие	стали	<u>.</u>	Тугуны	Титановые и	сплавы	y	АЛЮМИНИИ	Медь, пластик	L	Бронза, лагунь	Твердые	материалы	Страница
	ō	Количес	Yron	Диапазо	<35 HRC	35 HRC - 48 HRC	<35 HRC	35 HRC - 48 HRC	< 200 HB	> 200 HB	<850 MITa	850-1400 MПa	Кремний < 4%	4 % Кремний < 12%		< 550 MNa	> 550 MNa	48 HRC - 57 HRC	57 HRC - 65 HRC	Стр
				Общее і	приме	нение,	, обра	ботка і	матер	иалов	до тв	ердос	ти HR	C<35						
	M306 M308 M316	4-6	0	6-20	+	+	+	+	+	+	+	+	+	+	+	+	+	+		404
5	M309 M310	4-6	0	6-20	+	+	+	+	+	+	+	+	+	+	+	+	+	+		407
	M320 M321	4	0	3-12	+	+	+	+	+	+	+	+	+	+	+	+	+	+		411
	M700	15-19	0	50-80	++	++	++	++	++	++	++	++	+	+	+	+	+	+		412
	M701		0	15-40	++	++	++	++	++	++	++	++	+	+	+	+	+	+		413
	M710	3-6	0	10-32	+	++	+	++	++	++	+	++	+	+	+	+	+	+		414
	M721 M722	6-10	0	16-38	+	++	+	++	++	++	+	++	+	+	+	+	+	+		416
	M731 M732	6-10	0	16-38	+	++	+	++	++	++	+	++	+	+	+	+	+	+		417

⁺ Допускается

⁺⁺ Рекомендуется

3. ФРЕЗЕРНЫЕ ГОЛОВКИ

									06	рабат	ываем	лый ма	атериа	ал по І	SO					
					I	P	ı	Л	ı	K	;				N			ı	Н	
	Серия	Количество зубьев	Угол спирали	Диапазон размеров		Тали	Нержавеющие	стали	=	Тугуны	Титановые и	карипрочные		АЛЮМИНИИ	Медь, пластик		рринза, латунь	Твердые	материалы	Страница
	ව	Количест	Угол с	Диапазон	<35 HRC	35 HRC - 48 HRC	<35 HRC	35 HRC - 48 HRC	< 200 HB	> 200 HB	<850 МПа	850-1400 MПа	Кремний < 4%	4 % Кремний < 12%		< 550 MNa	> 550 MПа	48 HRC - 57 HRC	57 HRC - 65 HRC	CTp2
				Общее	приме	нение	, обра	ботка і	матер	иалов	до тв	ердос	ти HR(C<35						
\overline{Z}	MH54	2	45	8-25	+								++	++	++	++	+			421
\overline{Z}	MH56	3	45	8-25	+								++	++	++	++	+			421
\square	MH48	4	45	8-25	+								++	++	++	++	+			421
\overline{A}	MH81	4	37	8-25	++	+	++	+	++	+	++	+					++			424
7	MH45	6	45	8-25	++	+	++	+	++	+	++	+					++	++	+	427
7	MH47	6	30	8-25	++	+	++	+	++	+	++	+					++	++	+	427
2	MHR06 MHR12 MHR16	2-4	30	5-25	++	+	++	+	++	+	++	+					++	++	+	430
\overline{Z}	MH86	4	50	8-25	+	++	+	++	+	++	+	++						+	+	432
\overline{Z}	MH36	4	30	8-25	+	++	+	++	+	++	+	++						+	+	432
$\overline{}$	MH46 MH64	4-6	20	8-25														+	++	435
$\overline{}$	MHF	4-6	0	10-25	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	437
	MHD	6	0	13-25	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	438
	MHT01	3-5	0	10-20	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	439
								Оп	равки											
	MHZ1			8-32				Оправ	КИ С L	цилинд	ричес	кой ц	тейкоі	і твер	доспл	авная				440
	MHZ4			8-32				Оправ	КИ С L	цилинд	ричес	кой ц	јейкој	і твер	доспл	авная				441
	MHZ5			8-32				Опр	авки	с кони	ческо	й шей	ікой т	вердо	сплаві	ная				442
	MHZ2 MHZ6			8-32				Оп	равки	с цил	индри	ческо	й шей	ікой с	гальні	sie.				443
	MHZ3 MHZ7			8-32					Опра	ВКИ С Н	ониче	ской і	шейко	й стал	ьные					444

⁺ Допускается

⁺⁺ Рекомендуется

4. БОРФРЕЗЫ

	A/B ZYA/ZYB	C WRC	D KUD	E TRE	F RBF	G SPG	J/K KSJ/KSK	L KEL	M SKM	N WKN
Форма										
Страница	449	451	452	453	454	455	456	457	458	459

5. ТОКАРНЫЙ ИНСТРУМЕНТ

						0	браб	аты	ваем	ый м	атер	иал г	io IS()				
			ı	•	N	1	·	(3			N			ı	1	
Серия	в глане	Диапазон размеров	ě	CIBIL	Нержавеющие	стали		Idhyiyt	Титановые и	сплавы	Ž	АПСМИНИИ	Медь, пластик		рринза, лагунь	Твердые	материалы	Страница
0	Углы в	Диапазс	<35 HRC	35 HRC - 48 HRC	<35 HRC	35 HRC - 48 HRC	< 200 HB	> 200 HB	<850 МПа	850-1400 МПа	Кремний < 4%	4 % Кремний < 12%		< 550 MNa	> 550 MПa	48 HRC - 57 HRC	57 HRC - 65 HRC	Б
0	бщее пр	именение, обра	ботка	мат	ериа	пов д	О ТВ	ердо	сти Н	RC<	35							

	0	бщее пр	именение, обра	ÓOTK	а мат	ериа	лов д	(О ТВ	ердо	сти Н	IRC<	35					
пластина/державка	RNGN	30	8-25	++	++	++	++	++	++	++	++					+	461
расточная	LC200	8/20	3-6	++	+	++	+	++	+	++	+				++		462
расточная	LC201	0/20	3-6	++	+	++	+	++	+	++	+				++		466
расточная	LC202	8/47	3-6	++	+	++	+	++	+	++	+				++		468
расточная	LC203	20/23	3-6	++	+	++	+	++	+	++	+				++		471
расточная	LC204	8/8	3-6	++	+	++	+	++	+	++	+				++		473
подрезная	LC205	32/0	3-6	++	+	++	+	++	+	++	+				++		476
канавочная	LC206	- 45/45	3-6	++	+	++	+	++	+	++	+				++	+	478
канавочная	LC207	0/0	3-6	++	+	++	+	++	+	++	+				++		480
канавочная	LC208	0/0	3-6	++	+	++	+	++	+	++	+				++		482
отрезная	LC209	90/90	3-6	++	+	++	+	++	+	++	+				++		484
отрезная	LC210	90/90	3-6	++	+	++	+	++	+	++	+				++		485
центровочная/фасочная	LC211		3-6	++	+	++	+	++	+	++	+				++		486
резьбовая метрический	LC212		3-6	++	+	++	+	++	+	++	+				++		487
	ZLC1			держ	авка	цили	Індри	ческ	ая с	боко	вым	заж	имом	4			489
	ZLC2			держ	авка	цилі	индрі	1460	(ая с	верх	ним	зажі	имом				490
Державки	ZLC3					дерх	кавка	э цил	индр	оичес	кая						491
	ZLC4				Į	ержа	вка	прям	оуго	льна	я 90	0					492
	ZLC5				де	ржав	ка пр	ямоу	/голь	ная	прям	ая					493

⁺ Допускается

⁺⁺ Рекомендуется

6-8. ОБРАБОТКА ОТВЕРСТИЙ

					_	06	браба	тыва	аемы	ій мате	риал по	ISO			
Серия	Двойной угол в плане	Подвод СОЖ	Квалитет обрабатываемого отверстия	Сталь <35 НВС	Сталь 35 НВС - 48 НВС	Нерж. сталь <35 НRC	Нерж. сталь 35 HRC - 48 HRC	Чугун < НВ 200	Чугун > НВ 200	Титановые и жаропрочные сплавы <850 МПА	Титановые и жаропрочные сплавы 850-1400 МПа	Алюминий, медь, термопластики	Стали 48 НВС - 57 НВС	Стали 57 НRC - 65 НRC	Страница
		Свёрла спиральны	іе высоко	прои	звод	ителі	ьные								
D121, D122, D123, D124	140	наружный	H12	+	++	++	++	++	++	++	++	+	+		496
D221, D222, D223, D124	140	внутренний	H12	+	++	++	++	++	++	++	++	+	+		496
		Свёрла спир	апьные ві	PICUK	птпчі	ILIP									
D177	140	наружный	H12	+	++	++	++	++	++	++	++	+	+		512
D277	140	внутренний	H12	+	++	++	++	++	++	++	++	+	+		512
				OFW	v om	200									
D155	120	Свёрла для об наружный	раоотки л H12	тет ки	X CIII	raBUE						++			528
D255	120	внутренний	H12									++			528
D200	120											++			320
		Сверла для		о све	рлен	RN									
D181	140	наружный	H11	++	++	++	++	++	++	++	++		+		544
D281	140	внутренний	H11	++	++	++	++	++	++	++	++		+		544
D182	140	наружный	H11	++	++	++	++	++	++	++	++		+		575
D282	140	внутренний	H11	++	++	++	++	++	++	++	++		+		575
		Центр	овочные (свёрл	ıa										
D301	90	наружный	-	+	++	++	++	++	++	++	++	+			584
D311	120	наружный	-	+	++	++	++	++	++	++	++	+			584
D326	60	наружный	-	++	++	++	+	++	++	++	+	+			586
		Сверло-зенке	р самоцен	нтрир	ующ	ееся									
\$110	150	наружный	H10	+	++	++	++	++	++	++	++	+	+		588
		Зенк	овки и цеі	ковки											
\$301	90	наружный	-	+	++	++	++	++	++	++	++	+			601
\$302	75	наружный	-	+	++	++	++	++	++	++	++	+			601
\$303	60	наружный	-	+	++	++	++	++	++	++	++	+			601
\$304	120	наружный	-	+	++	++	++	++	++	++	++	+			601
\$311	90	наружный	-	+	++	++	++	++	++	++	++	+			602
\$312	180	наружный	-	+	++	++	++	++	++	++	++	+			603
\$313	180	наружный	-	+	++	++	++	++	++	++	++	+			604
			Разверткі	И											
R101, R102	-	наружный	Н7	+	++	++	++	++	++	++	++		+		606
R110, R111	-	наружный	H7	+	++	++	++	++	++	++	++		+		607
R201	-	наружный	Н7	+	+	+	+	+	+	+	+		+		608
R202	-	наружный	H7	+	+	+	+	+	+	+	+		+		610
+ Лопускается ++	Pekomen														

⁺ Допускается

⁺⁺ Рекомендуется

9. РЕЗЬБОНАРЕЗНОЙ ИНСТРУМЕНТ

				1011 7	WILLI														
								_ (Обраб	баты	ваем	ый м	атер	иал і	10 IS	0			
						ı	•	ı	/	ı	(:	S			N			
Резьба	Материал	Серия	Количество зубьев	Угол спирали	Диапазон размеров	į	E 5	Нержавеющие	стали	<u> </u>	Тугуны	Титановые и	жаропрочные сплавы	,	Алюминии	Медь, пластик		ьронза, латунь	Страница
<u>a</u>	Ma		Количес	Угол	Диапазо	<35 HRC	35 HRC - 48 HRC	<35 HRC	35 HRC - 48 HRC	< 200 HB	> 200 HB	<850 MNa	850-1400 MITa	Кремний < 4%	4 % Кремний < 12%		< 550 MNa	> 550 MNa	E
					Резьбоф	резь													
М	НМ	T150	3-5	15	M4-M20	+	++	++	+	++	+	++	+	+	+	+	+	++	614
м	НМ	T140	3-5	15	M4-M20	+	++	++	+	++	+	++	+	+	+	+	+	++	616
UN	НМ	T551 T552	3-4	15	NR10-5/8	+	++	++	+	++	+	++	+	+	+	+	+	++	617
UN	НМ	T541 T542	3-4	15	NR10-5/8	+	++	++	+	++	+	++	+	+	+	+	+	++	619
M	НМ	T135	3-4	0	M6-M18	+	++	++	+	++	+	++	+	+	+	+	+	++	620
					Метчи	ки													
		T100				N/I													
M	HM	T101	3-4	0	M3-M16	++	+	++	+	++	+	++	+					++	623
M	HSS	T310	3-4	0	M2-M30	++	+	++	+	++	+	++	+					++	625
М	HSS	T320	3-4	0	M2-M52	++	+	++	+	++	+	++	+	+	+	+	+	++	627
M	НМ	T102 T103	3-4	15	M2-M30	++	+	++	+	++	+	++	+					++	629
M	НМ	T104 T105	3-4	45	M3-M16	++	+	++	+	++	+	++	+					++	631
М	НМ	T110 T111	3-4	0	M3-M16	++	+	++	+	++	+	++	+					++	633
М	нм	T112 T113	3-4	45	M3-M16	++	+	++	+	++	+	++	+					++	635
UNC	НМ	T500	3-4	0	NR2-1"	++	+	++	+	++	+	++	+					++	637
UNF	НМ	T501	3-4	0	NR3-1"	++	+	++	+	++	+	++	+					++	638
UNC	НМ	T502	3-4	15	NR2-1"	++	+	++	+	++	+	++	+					++	639
UNF	НМ	T503	3-4	15	NR3-1"	++	+	++	+	++	+	++	+					++	640
UNC	НМ	T504	3-4	45	NR2-1"	++	+	++	+	++	+	++	+					++	641
UNF	НМ	T505	3-4	45	NR3-1"	++	+	++	+	++	+	++	+					++	642
UNC	HSS	T350	3-4	0	NR2-1"	++	+	++	+	++	+	++	+					++	643
UNF	HSS	T351	3-4	0	NR3-1"	++	+	++	+	++	+	++	+					++	644
UNC	HSS	T360	3-4	0	NR2-1"	++	+	++	+	++	+	++	+	+	+	+	+	++	645

⁺ Допускается

⁺⁺ Рекомендуется

10. МЕЛКОРАЗМЕРНЫЙ ИНСТРУМЕНТ

								06	рабат	ываем	лый ма	атериа	эл по І	SO					
					P	ı	VI		K		S	,		N			-	Н	
Серия	Количество зубьев	Угол спирали	Диапазон размеров		Стали	Нержавеющие	стали	<u>.</u>	Чугуны	Титановые и	каропрочные сплавы	2	АПОМИНИИ	Медь, пластик		рринза, латунь	Твеодые	материалы	Страница
8	Количест	Угол с	Диапазо	<35 HRC	35 HRC - 48 HRC	<35 HRC	35 HRC - 48 HRC	< 200 HB	> 200 HB	<850 MITa	850-1400 МПа	Кремний < 4%	4 % Кремний < 12%		< 550 MNa	> 550 MNa	48 HRC - 57 HRC	57 HRC - 65 HRC	CTD
							Ф	резы											
M838	2	30	0,1-3	+	+	+	+	+	+	+	+		+	+	+	+	+		649
≥ M808	2	30	0,1-3	+	+	+	+	+	+	+	+		+	+	+	+	+		652
							Св	ерла											
D800	2	30	0,1-3	+	+	+	+	+	+	+	+		+	+	+	+	+		654
D139	2	0	0,1-1	+	+	+	+	+	+	+	+		+	+	+	+	+		667

⁺ Допускается

⁺⁺ Рекомендуется

11. ГРАВИРОВАЛЬНЫЙ ИНСТРУМЕНТ

								Об	рабат	ываем	иый ма	атериа	ал по І	SO					
				ı	P	ı	VI	ı	K	;	S			N			ı	1	
Серия	Количество зубьев	Угол спирали	Диапазон размеров	ć	Стали	Нержавеющие	стали	į	Чугуны	Титановые и	жаропрочные	,	Алюминии	Медь, пластик		ьронза, латунь	Твердые	материалы	Страница
30	Количест	Угол с	Диапазон	<35 HRC	35 HRC - 48 HRC	<35 HRC	35 HRC - 48 HRC	< 200 HB	> 200 HB	<850 МПа	850-1400 МПа	Кремний < 4%	4 % Кремний <12%		< 550 MNa	> 550 MПа	48 HRC - 57 HRC	57 HRC - 65 HRC	Стрх
G100	2	0	1-3	+	+	+	+	+	+	+	+	+	+	+	+	+	+		669
G101	2	0	1-4	+	+	+	+	+	+	+	+	+	+	+	+	+	+		670
G102	2	0	0.5-0.8	+	+	+	+	+	+	+	+	+	+	+	+	+	+		671
G103	1	0	0.8-6	+	+	+	+	+	+	+	+	+	+	+	+	+	+		672
G104	1	0	0.1-2	+	+	+	+	+	+	+	+	+	+	+	+	+	+		673
G105	1	0	0.2-0.3	+	+	+	+	+	+	+	+	+	+	+	+	+	+		675
G106	1	10	0.2-0.5	+	+	+	+	+	+	+	+	+	+	+	+	+	+		676
G107	3	0	0.1	+	+	+	+	+	+	+	+	+	+	+	+	+	+		677
G108	1	0	0.2-0.5	+	+	+	+	+	+	+	+	+	+	+	+	+	+		678

12. ОБРАБОТКА АЛЮМИНИЕВОГО ПРОФИЛЯ

							06	рабат	ываем	лый ма	атериа	ал по I	SO								
				ı	•	N	Л	ı	(;	S			N			ŀ	ł			
вид	гво зубьев	пирали	Диапазон размеров	į	CT STIR	Нержавеющие	стали	<u>.</u>	Чугуны	Титановые и	жаропрочные сплавы		Алюминии	Медь, пластик		рронза, лагунь	Твердые	материалы	Страница		
3	Серия	Количество зубьев	Количест	Количество Угол спи	Диапазог	<35 HRC	35 HRC - 48 HRC	<35 HRC	35 HRC - 48 HRC	< 200 HB	> 200 HB	<850 МПа	850-1400 MITa	Кремний < 4%	4 % Кремний < 12%		< 550 MNa	> 550 MNa	48 HRC - 57 HRC	57 HRC - 65 HRC	Crps
MP100	1	20	2-20	+								++	++	++			+		680		
MP101	1	20	3.2-16	+								++	++	++			+		682		
MP102	2	20	5-8	+								++	++	++			+		683		
MP103	2	20	2-4	+								++	++	++			+		684		

⁺ Допускается

⁺⁺ Рекомендуется

НОВИНКИ 2020

- Сверла для обработки отверстий глубиной до 15D серии D181, D281, D182-D282
- Токарный инструмент для расточки отверстий диаметром от 3 мм
- Резьбофрезы и метчики для метрической и дюймовой резьбы Машинные метчики и резьбофрезы из твердого сплава. Ручные метчики из порошковой быстрорежущей стали. Длительная стабильность профиля получаемой резьбы.
- Сменные фрезерные головки

Легкая замена инструмента без переналадки, возможность переточки, два типа резьбового соединения.

- Линейка инструмента диаметром от 0,1 до 3 мм Обеспечивает длительную стабильность профиля получаемой резьбы.
- Борфрезы для всех типов обрабатываемых материалов
 Высокопроизводительная зачистка швов, кромок, подготовка мест сварки и пайки.
- Зенковки, цековки и фасочные фрезы Комплексная обработка крепежных отверстий.
- Гравировальный инструммент Надежность и высокая производительность.
- Фрезы для обработки алюминиевого профиля Комплексная обработка крепежных отверстий.

POLI - НОВАЯ ЛИНЕЙКА ФРЕЗ ПО ОБРАБОТКЕ АЛЮМИНИЯ

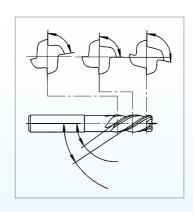
Зеркальная поверхность передней грани режущей кромки фрез POLI обеспечивает лучшее скольжение стружки и удаление её из зоны резания.

Снижение силы резания при фрезеровании фрезами POLI позволяет увеличить режимы обработки и сократить время обработки на операции.

Фрезы линейки POLI предназначены для обработки алюминиевых и медных сплавов склонных к налипанию.

Высокое качество обработанной поверхности.

Широкая гамма фрез POLI представлена на стр. 28 - стр. 100 включительно.



ЛИНЕЙКА ФРЕЗ С АНТИВИБРАЦИОННОЙ ГЕОМЕТРИЕЙ

- Лучше качество обработанной поверхности
- Выше стойкость инструмента
- Меньше вибрации при работе
- Меньше шума
- Более прочная режущая кромка инструмента
- Стабильный переход сопрягаемых поверхностей обрабатываемой детали

СЕРИЯ

М152 – черновая обработка алюминия и цветных сплавов.

СЕРИИ

M181 и **M190** — обработка конструкционных сталей, чугунов, нержавеющих и жаропрочных сталей и сплавов, титановых сплавов.

СЕРИЯ

M182 и **M122** — обработка высокопрочных нержавеющих и жаропрочных сталей и сплавов, высокопрочных титановых сплавов, конструкционных сталей подвергнутых закалке до 35-57 HRC.

В процессе работы эти фрезы более эффективно сопротивляются возникновению резонансных автоколебаний, что положительно сказывается на стойкости инструмента и на качестве обработанной поверхности. Этот эффект достигается за счет смещения осевого расположения режущих кромок по длине режущей части.

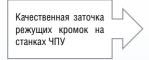
Острая вершина ослаблена с двух сторон задними углами, в то время как радиус перехода (фаска) имеет свой собственный задний угол, за счет этого переход осуществляется более плавно и меньше ослабляет режущую кромку.

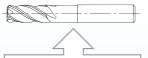
ВОССТАНОВЛЕНИЕ РЕЖУЩИХ СВОЙСТВ ИНСТРУМЕНТА

Одним из направлений деятельности ЗАО «НИР» является переточка и восстановление режущих свойств инструмента.

Восстановление режущих свойств инструмента позволяет сократить инструментальные расходы на 25-50%.

Качественная переточка позволяет увеличить жизненный цикл инструмента и использовать инструмент 2, 3 и более раз в зависимости от технологии его применения. А нанесение износостойкого покрытия на переточенный инструмент позволит увеличить время его работы до переточки.


Восстановление специального и профильного инструмента также позволяет значительно сократить время поставки.


Мы обеспечиваем переточку и восстановление всей номенклатуры стандартной и специальной продукции выпускаемой нами и аналогичной продукции сторонних производителей:

- Фрезы
- Сверла
- Зенкера и развертки
- Червячные фрезы

Возможность переточки и основные параметры перетачиваемого инструмента предварительно согласовываются с заказчиком.

Контроль качества выполненных операций по требованиям к новому инструменту

- Восстановление режущих свойств червячных фрез и ружейных сверл с нанесением износостойких покрытий
- Стойкость переточенной фрезы соответствует стойкости новой
- Сохранение формы профиля фрезы
- Червячные фрезы
 Наружный диаметр от 20 до 180 мм
 Общая длина до 180 мм
- Ружейные сверла
 Наружный диаметр от 1 мм
 Общая длина до 300 мм

МОНОЛИТНЫЕ ДИСКОВЫЕ ФРЕЗЫ

Чистовая и получистовая обработка

Фрезы предназначены для обеспечения высокой эффективности и надежности обработки деталей из различных материалов.

- Обработка узких канавок
- Отрезка
- Возможность работать «пакетом» фрез
- Высокая точность и жесткость обработки
- Высокая надежность инструмента
- Быстрая смена инструмента
- Высокое качество обработанной поверхности

ИНЖИНИРИНГОВЫЕ УСЛУГИ

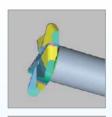
Одним из основных преимуществ нашей компании является инженерный потенциал. Чтобы быть конкурентоспособными и гибкими в условиях современного рынка металлообработки, мы выделяем инженерную подготовку в особое бизнеснаправление.

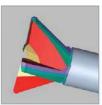
Возможности нашей команды:

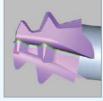
- Проведение опытно-конструкторских работ.
- Разработка конструкторской и технологической документации (проектирование оснастки и ТП).
- Внедрение и «обкатка» сложных технологических процессов, как на собственном оборудовании, так и на мощностях заказчика.
- Разработка управляющих программ и программ автоматизации подготовки производства.
- Подготовка обслуживающего персонала (наладчиков станков с ЧПУ).
- Составление технического задания на подбор инструмента под задачи заказчика.

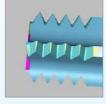
ИЗГОТОВЛЕНИЕ ФАСОННЫХ ФРЕЗ

Разработка и изготовление профильных фрез для изготовления ёлочных пазов. Операция фрезерования заменяет 2 операции протягивания.


Возможность переточки. Точность профиля 0,01мм.


Короткие сроки повторного изготовления.


Различные формы сопряжений (радиусы, фаски).


Изготовление из твердого сплава или быстрорежущих сталей.

Фрезы для обработки Т-образных пазов и пазов типа «Ласточкин хвост».

S Ni 850-1200MПа

S Ni < 850MΠa S TI

850-1200M∏a S TI < 850M∏a Κ

>200HE

< 200HE M >750M∏a

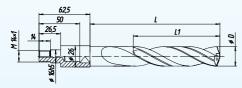
Μ < 750MΠ

Р

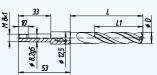
СВЕРЛА С РЕЗЬБОВЫМ ХВОСТОВИКОМ

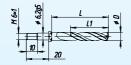
Подвод СОЖ: наружный, внутренний Направление спирали: правое Количество режущих кромок: 2

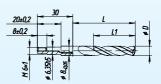
Диаметр D: от 3 до 25 мм

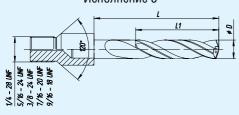

Длина рабочей части L: до 180 мм

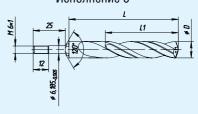
Покрытие режущей части: TiCN, TiAIN, ZrN



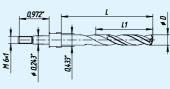

Исполнение 1


Исполнение 2


Исполнение 3


Исполнение 4

Исполнение 5



Исполнение 6

Исполнение 7

Исполнение 8

ИЗГОТОВЛЕНИЕ СПЕЦИАЛЬНОГО ИНСТРУМЕНТА

Для решения Ваших задач, требующих индивидуального подхода, наши специалисты разработают и изготовят специальный инструмент.

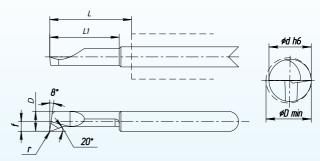
- Фрезы концевые различных типов.
- Сверла.
- Развертки, зенкеры, центровки.
- Изготовление инструмента по чертежам заказчика или по разработанным ЗАО «НИР».

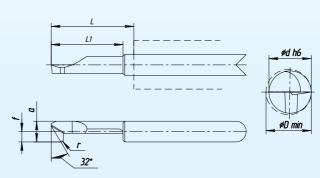
Сроки проектирования и изготовления от 15 рабочих дней, в зависимости от сложности и объема партии инструмента.

Предельная точность изготовления:

- допуск по 6 квалитету;
- биение до 5 мкм.

Применение специального инструмента позволяет сократить число переходов на операции и получать поверхности сложного профиля одним инструментом, а также обрабатывать труднодоступные поверхности. При проектировании инструмента будут учтены особенности Вашего производства.

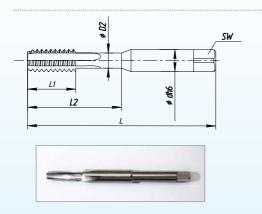

При заказе специального инструмента или инструмента с параметрами отличными от каталога воспользуйтесь бланками заказа в конце каталога.


СМЕННЫЕ РЕЗЦОВЫЕ ВСТАВКИ

Направление резания: правое/левое Количество режущих кромок: 1 Геометрические параметры: L 40-180 мм Параметры точности: $r\pm0.02$ мм, $L1\pm0.02$ мм Подвод СОЖ: наружный



РЕЗЬБОНАРЕЗНОЙ ИНСТРУМЕНТ ДЛЯ ВЫПОЛНЕНИЯ ВНУТРЕННЕЙ РЕЗЬБЫ В ГЛУХИХ И СКВОЗНЫХ ОТВЕРСТИЯХ РАЗНОЙ ФОРМЫ


МЕТЧИКИ

Тип резьбы: метрическая, дюймовая и другие

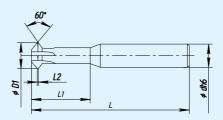
Количество режущих кромок: 3-6

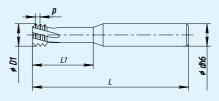
Геометрические параметры: Ø 2,5-32 мм, L 36-180 мм

Подвод СОЖ: наружный, внутренний

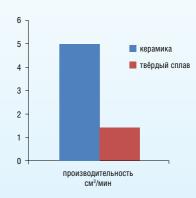
РЕЗЬБОФРЕЗЫ

Тип резьбы: метрическая, дюймовая и другие


Количество режущих кромок: 3-5


Геометрические параметры: Ø 2,5-32 мм, L 57-180 мм

Подвод СОЖ: наружный, внутренний

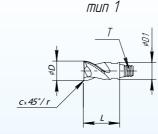


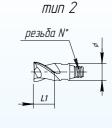
КЕРАМИЧЕСКИЕ ФРЕЗЫ ДЛЯ ВЫСОКОСКОРОСТНОЙ ОБРАБОТКИ

	СРАВНЕНИЕ С ФРЕЗОЙ	ИЗ ТВЁРДОГО СПЛАВА
	Керамика	Твёрдый сплав
Обрабатываемый материал	хн	78T
Станок	обрабатывающи	ий центр UCP-710
V м/мин	376 (12000 об/мин)	45 (1430 об/мин)
S мм/мин	1000 (0,0208 мм/зуб)	286 (0,05 мм/зуб)
Ширина/глубина обработки, мм	5/1	5/1
Время работы	46 мин.	46 мин.
Производительность см³/мин	5	1,43

P <300HB	Применение рекомендуется
45°	Угол спирали
h7	Допуск изготовления режущей части
R±0,02	Допуск изготовления радиуса
K°± 5'	Допуск изготовления конуса
ØH7	Точность получаемого отверстия
140°	Угол вершины
	Для обработки глухих отверстий
D _{-0,03}	Допуск на диаметр рабочей части
	Ручной инструмент
	Инструмент для обработки фасок
	Инструмент с возможностью осевого врезания
	Не допускается осевое врезание
СОЖ	Работать без смазочно-охлаждающей жидкости
HM	Материал инструмента - твердый сплав
TiCN	Покрытие инструмента
	Для обработки сквозных отверстий

ФРЕЗЕРОВАНИЕ Сменные фрезерные головки


Ν



ФРЕЗЕРНАЯ ГОЛОВКА ДЛЯ ОБРАБОТКИ АЛЮМИНИЯ СЕРИИ МН48, МН54 И МН56

Получистовая обработка Подвод СОЖ: наружный Направление спирали: правое Количество режущих кромок: 2-4

Исполнение резьбы тип 1

MH56-127016R16T08 H20

MH56-127016R24T08 H20

MH56-127016R32T08 H20

MH54-127016R00T08 H20

Наименование и тип резьбы

T08

T08

T08

Tionomionio poososi Timi T		Tionomionio poososi tiin 2							
Обозначение	Т	Обозначение	Резьба №	D, MM	z	L1, MM	r, MM	D1, MM	L, MM
MH54-080010R05T05 H20	T05			8.00	2	5.00	0.50	7.70	10.00
MH56-080010R05T05 H20	T05			8.00	3	5.00	0.50	7.70	10.00
MH48-080015R00T05 H20	T05			8.00	4	8.00	0.00	7.70	15.00
MH56-100013R05T06 H20	T06	MH56-100013R05V H20	Nº1	10.00	3	6.00	0.50	9.60	13.00
MH56-100013R10T06 H20	T06	MH56-100013R10V H20	Nº1	10.00	3	6.00	1.00	9.60	13.00
MH48-100019R00T06 H20	T06	MH48-100019R00V H20	Nº1	10.00	4	10.00	0.00	9.60	19.00
MH54-100013R05T06 H20	T06	MH54-100013R05V H20	Nº1	10.00	2	7.00	0.50	9.60	13.00
MH54-100013R10T06 H20	T06	MH54-100013R10V H20	Nº1	10.00	2	7.00	1.00	9.60	13.00
MH56-120016R05T08 H20	T08	MH56-120016R05V H20	Nº1	12.00	3	8.00	0.50	11.70	16.50
MH56-120016R10T08 H20	T08	MH56-120016R10V H20	Nº1	12.00	3	8.00	1.00	11.70	16.50
MH56-120016R30T08 H20	T08	MH56-120016R30V H20	Nº1	12.00	3	8.00	3.00	11.70	16.50
MH54-120016R05T08 H20	T08	MH54-120016R05V H20	Nº1	12.00	2	9.00	0.50	11.70	16.50
MH54-120016R10T08 H20	T08	MH54-120016R10V H20	Nº1	12.00	2	9.00	1.00	11.70	16.50
MH56-120023R02T08 H20	T08	MH56-120023R02V H20	Nº1	12.00	3	12.00	0.20	11.70	23.00
MH48-120023R00T08 H20	T08	MH48-120023R00V H20	Nº1	12.00	4	12.00	0.00	11.70	23.00
MH56-127016R08T08 H20	T08	MH56-127016R08V H20	Nº1	12.70	3	8.00	0.80	12.40	16.50

Исполнение резьбы тип 2

12.70

12.70

12.70 3

12.70

Nº1

Nº1

8.00 1.60

8.00 2.40 12.40 16.50

8.00 | 3.20 | 12.40 | 16.50

9.50 0.00

12.40 16.50

12.40 16.50

MH56-127016R16V H20

MH56-127016R24V H20

MH56-127016R32V H20

MH54-127016R00V H20

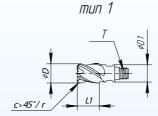
Наим	иенование	е и тип резьбы							
Исполнение резьбы тип 1		Исполнение резьбы тип 2							
Обозначение	Т	Обозначение	Резьба №	D, MM	z	L1,	r, MM	D1, MM	L,
MH54-127016R05T08 H20	T08	MH54-127016R05V H20	Nº1	12.70	2	9.50	0.50	12.40	16.50
MH56-160020R00T10 H20	T10	MH56-160020R00V H20	Nº2	16.00	3	10.00	0.00	15.30	20.50
MH56-160020R10T10 H20	T10	MH56-160020R10V H20	Nº2	16.00	3	10.00	1.00	15.30	20.50
MH56-160020R20T10 H20	T10	MH56-160020R20V H20	Nº2	16.00	3	10.00	2.00	15.30	20.50
MH56-160020R30T10 H20	T10	MH56-160020R30V H20	Nº2	16.00	3	10.00	3.00	15.30	20.50
MH56-160020R40T10 H20	T10	MH56-160020R40V H20	Nº2	16.00	3	10.00	4.00	15.30	20.50
MH56-160028R00T10 H20	T10	MH56-160028R00V H20	Nº2	16.00	3	16.00	0.00	15.30	28.00
MH56-160028R02T10 H20	T10	MH56-160028R02V H20	Nº2	16.00	3	16.00	0.20	15.30	28.00
MH56-160028R05T10 H20	T10	MH56-160028R05V H20	Nº2	16.00	3	16.00	0.50	15.30	28.00
MH56-160028R25T10 H20	T10	MH56-160028R25V H20	Nº2	16.00	3	16.00	2.50	15.30	28.00
MH48-160028R00T10 H20	T10	MH48-160028R00V H20	Nº2	16.00	4	16.00	0.00	15.30	28.00
MH56-200025R05T12 H20	T12	MH56-200025R05V H20	Nº3	20.00	3	12.00	0.50	18.30	25.50
MH56-200025R10T12 H20	T12	MH56-200025R10V H20	Nº3	20.00	3	12.00	1.00	18.30	25.50
MH56-200025R20T12 H20	T12	MH56-200025R20V H20	Nº3	20.00	3	12.00	2.00	18.30	25.50
MH56-200025R30T12 H20	T12	MH56-200025R30V H20	Nº3	20.00	3	12.00	3.00	18.30	25.50
MH56-200025R40T12 H20	T12	MH56-200025R40V H20	Nº3	20.00	3	12.00	4.00	18.30	25.50
MH56-200034R00T12 H20	T12	MH56-200034R00V H20	Nº3	20.00	3	20.00	0.00	18.30	34.00
MH56-200034R02T12 H20	T12	MH56-200034R02V H20	Nº3	20.00	3	20.00	0.20	18.30	34.00
MH56-200034R05T12 H20	T12	MH56-200034R05V H20	Nº3	20.00	3	20.00	0.50	18.30	34.00
MH56-200034R25T12 H20	T12	MH56-200034R25V H20	Nº3	20.00	3	20.00	2.50	18.30	34.00
MH56-250037R05T15 H20	T15	MH56-250037R05V H20	Nº4	25.00	3	19.00	0.50	23.90	37.00
MH56-250037R10T15 H20	T15	MH56-250037R10V H20	Nº4	25.00	3	19.00	1.00	23.90	37.00
MH56-250037R30T15 H20	T15	MH56-250037R30V H20	Nº4	25.00	3	19.00	3.00	23.90	37.00

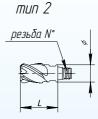
Рекомендации по выбору режимов резания

ak.		T15SO N														
0.250	-	иевые авы	Алюминий (Si<0.5%)			иний 54%)		линий 12%)		техн. тая		и бронза) МПа)				
Ø	n fv		n	fv	n	fv	n	fv	n	fv	n	fv				
5	4900	163	20000	360	22000	360	4900	126	10750	315	10750	163				
6	4350	226	20000	520	20000	520	4350	174	9550	435	9550	226				
8	3250	250	19000	680	14500	580	3250	193	7150	480	7150	250				
10	2600	257	15000	750	12000	720	2600	198	5750	495	5750	257				
12	2230	306	13000	870	10000	870	2230	236	4900	590	4900	306				
14	2050	430	12000	1000	9500	1000	2050	331	4500	830	4500	430				
16	1810	520	10500	1260	8200	1150	1810	400	3950	1000	3950	520				
18	1700	573	9900	1380	7700	1250	1700	441	3750	1100	3750	573				
20	1450	565	8500	1520	6500	1300	1450	435	3200	1080	3200	565				
25	1100	514	5000	1420	4000	1200	1100	396	2400	990	2400	514				

02						IS	D N					
050	Магні спл	1евые авы				линий 12%)	Медь Чис			и бронза) МПа)		
Ø	n	fv	n	fv	n	fv	n	fv	n	fv	n	fv
5	4900	364	20000	800	22000	800	4900	280	10750	420	10750	364
6	4350	507	20000	1000	20000	1000	4350	390	9550	585	9550	507
8	3250	423	19000	1140	14500	1000	3250	326	7150	489	7150	423
10	2600	543	15000	1200	12000	1080	2600	418	5750	627	5750	543
12	2230	579	13000	1200	10000	1200	2230	446	4900	669	4900	579
14	2050	677	12000	1420	9500	1500	2050	521	4500	781	4500	677
16	1810	705	10500	1500	8200	1600	1810	543	3950	814	3950	705
18	1700	750	9900	1630	7700	1700	1700	577	3750	865	3750	750
20	1450	715	8500	1750	6500	1800	1450	550	3200	825	3200	715
25	1100	657	5000	1800	4000	1440	1100	506	2400	759	2400	657

п — частота вращения шпинделя, об/мин; fv — минутная подача, мм/мин.
При работе с вылетом инструмента свыше 5D снижайте подачу на 20–70% в зависимости от вылета инструмента.
При работе по литейной корке снижайте режимы резания на 50%.
При работе инструментом с покрытием увеличьте режимы на 25–50%.
При изменении глубины и/или ширины резания режимы фрезерования определяются опытным путем.
Вы можете запросить режимы резания у специалистов 3AO «НИР» оформив техническое задание стр. 708
Попумун, по репеситу с корости разания и подачи в 30% приверецы на стр. 611


Формулы по пересчету скорости резания и подачи на зуб приведены на стр. 691


ФРЕЗЕРНАЯ ГОЛОВКА СЕРИЯ МН81

АНТИВИБРАЦИОННАЯ ГЕОМЕТРИЯ

Получистовая обработка Подвод СОЖ: наружный Направление спирали: правое Количество режущих кромок: 4

Наим	енование	е и тип резьбы							
Исполнение резьбы тип 1		Исполнение резьбы тип 2							
Обозначение	Т	Обозначение	Резьба №	D, MM	D1, MM	L, MM	L1, MM	c×45°, MM	r, MM
MH81-080010F03T05 H24	T05			8.00	7.70	10.00	5.00	0.3	-
MH81-080010R00T05 H24	T05			8.00	7.70	10.00	5.00	-	-
MH81-080010R05T05 H24	T05			8.00	7.70	10.00	5.00	-	0.50
MH81-100013F04T06 H24	T06	MH81-100013F04V H24	Nº1	10.00	9.60	13.00	7.00	0.4	-
MH81-100013R05T06 H24	T06	MH81-100013R05V H24	Nº1	10.00	9.60	13.00	7.00	-	0.50
MH81-120016F05T08 H24	T08	MH81-120016F05V H24	Nº1	12.00	11.70	16.50	9.00	0.5	-
MH81-120016R05T08 H24	T08	MH81-120016R05V H24	Nº1	12.00	11.70	16.50	9.00	-	0.50
MH81-127016F05T08 H24	T08	MH81-127016F05V H24	Nº1	12.70	12.40	16.50	9.50	0.5	-
MH81-127016R00T08 H24	T08	MH81-127016R00V H24	Nº1	12.70	12.40	16.50	9.50	-	-
MH81-127016R04T08 H24	T08	MH81-127016R04V H24	Nº1	12.70	12.40	16.50	9.50	-	0.4
MH81-127016R08T08 H24	T08	MH81-127016R08V H24	Nº1	12.70	12.40	16.50	9.50	-	0.8
MH81-127016R15T08 H24	T08	MH81-127016R15V H24	Nº1	12.70	12.40	16.50	9.50	-	1.5
MH81-160020F06T10 H24	T10	MH81-160020F06V H24	Nº2	16.00	15.30	20.50	12.00	0.6	-
MH81-160020R05T10 H24	T10	MH81-160020R05V H24	Nº2	16.00	15.30	20.50	12.00	-	0.50
MH81-200025F06T12 H24	T12	MH81-200025F06V H24	Nº3	20.00	18.45	25.50	15.00	0.6	-
MH81-200025R05T12 H24	T12	MH81-200025R05V H24	Nº3	20.00	18.30	25.50	15.00	-	0.50

Наиме	Наименование и тип резьбы								
Исполнение резьбы тип 1		Исполнение резьбы тип 2							
Обозначение	т	Обозначение	Резьба №	D, MM	D1, MM	L, MM	L1, MM	c×45°, MM	r, MM
MH81-250037F06T15 H24	T15	MH81-250037F06V H24	Nº4	25.00	23.90	37.00	22.00	0.6	-
MH81-250043F06T15 H24	T15	MH81-250043F06V H24	Nº4	25.00	23.90	43.00	28.00	0.6	-
MH81-250037R05T15 H24	T15	MH81-250037R05V H24	Nº4	25.00	23.90	37.00	22.00	-	0.50
MH81-250037R10T15 H24	T15	MH81-250037R10V H24	Nº4	25.00	23.90	37.00	22.00	-	1.00
MH81-250122R20T15 H24	T15	MH81-250122R20V H24	Nº4	25.00	23.90	37.00	22.00	-	2.00
MH81-250037R30T15 H24	T15	MH81-250037R30V H24	Nº4	25.00	23.90	37.00	22.00	-	3.00

Рекомендации по выбору режимов резания

		ISO	ם ר		ISU	M	ISC	ı v		121) S		ISC	N
		100	J F		100	, IVI	100	, r		100	, ,		100	<i>)</i> 14
0,250	Сталь углеродистая конструкц низколегир.		Сталь углеродистая конструкц низколегир. Сталь легированная < 35HRC 455HRC		CT3JB < 750 MNa	Чугун < 250 НВ		,		Титановые	CIDIABBI < 850 MNa	Латунь и бронза	(< 700 MNa)	
Ø	n	fv	n	fv	n	fv	n	fv	n	fv	n	fv	n	fv
3	13490			141	4106	49	9335	149	12512	250	5181	83	13490	266
4	10117	243	6989	168	3128	50	7234	174	9091	291	3910	94	10068	279
6	7771	311	5181	249	2326	74	5709	274	6745	405	3226	194	7234	344
8	5865	328	4272	308	1750	70	4272	290	5249	399	2522	202	5445	436
10	4643	390	3568	385	1554	93	3734	403	4350	522	2180	305	4643	567
12	4154	582	2981	477	1290	114	2981	429	3763	572	1906	305	3861	644
16	3206	641	2248	450	978	117	2248	513	2835	567	1466	264	3108	869
20	2639	633	1867	411	782	119	1857	483	2248	540	1173	235	2493	1026

	130) F		130) IVI	130	, r		100	Jo		130	, IN	
0520	Сталь углеродистая конструкц.				НАЛАЬ	Чугун < 250 НВ		Титан чистый		(11)(486) < 850 MNa	_ ₹	(< 700 Mila)			
Ø	n	fv	n	fv	n	fv	n	fv	n	fv	n	fv	n	fv	
3	11903	286	7763	186	3623	58	8237	231	11040	442	4571	110	11903	285	
4	8927	357	6167	247	2760	55	6383	230	8021	417	3450	110	8884	354	
6	6857	384	4571	384	2053	66	5037	403	5951	476	2846	228	6383	552	
8	5175	435	3769	482	1544	74	3769	452	4632	482	2225	303	4804	673	
10	4097	557	3148	516	1371	99	3295	554	3838	614	1923	362	4097	716	
12	3666	660	2631	610	1139	118	2631	526	3321	664	1682	350	3407	750	
16	2829	679	1984	595	863	138	1984	555	2501	600	1294	295	2743	819	
20	2329	699	1647	527	690	138	1639	524	1984	595	1035	248	2199	966	

€200HB

Ρ

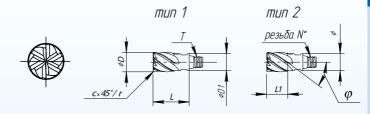
При работе с вылетом инструмента свыше 5D снижайте подачу на 20-70% в зависимости от вылета инструмента.

При изменении глубины и/или ширины резания режимы фрезерования определяются опытным путем. Вы можете запросить режимы резания у специалистов ЗАО «НИР» оформив техническое задание стр. 708

При работе по литейной корке снижайте режимы резания на 50%

При работе инструментом без покрытия снижайте режимы на 10-30%.

Формулы по пересчету скорости резания и подачи на зуб приведены на стр. 691


S ті ≤850МПа

<200HE

ФРЕЗЕРНАЯ ГОЛОВКА ДЛЯ ЧИСТОВОЙ ОБРАБОТКИ СЕРИЯ МН45 И МН47

Чистовая обработка Подвод СОЖ: наружный Направление спирали: правое Количество режущих кромок: 6

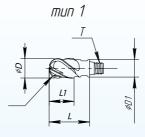
Наим									
Исполнение резьбы тип 1		Исполнение резьбы тип 2							
Обозначение	Т	Обозначение	Резьба №	D, MM	L1, MM	r, MM	D1, MM	L, MM	ф, град
MH47-080010R05T05 H24	T05			8.00	5.00	0.50	7.70	10.00	30.0
MH47-080010R10T05 H24	T05			8.00	5.00	1.00	7.70	10.00	30.0
MH47-080010R15T05 H24	T05			8.00	5.00	1.50	7.70	10.00	30.0
MH45-080010R05T05 H24	T05			8.00	5.00	0.50	7.70	10.00	45.0
MH45-080010R10T05 H24	T05			8.00	5.00	1.00	7.70	10.00	45.0
MH45-080010R15T05 H24	T05			8.00	5.00	1.50	7.70	10.00	45.0
MH47-100013R05T06 H24	T06	MH47-100013R05V H24	Nº1	10.00	7.00	0.50	9.60	13.00	30.0
MH47-100013R10T06 H24	T06	MH47-100013R10V H24	Nº1	10.00	7.00	1.00	9.60	13.00	30.0
MH47-100013R15T06 H24	T06	MH47-100013R15V H24	Nº1	10.00	7.00	1.50	9.60	13.00	30.0
MH45-100013R05T06 H24	T06	MH45-100013R05V H24	Nº1	10.00	7.00	0.50	9.60	13.00	45.0
MH45-100013R00T06 H24	T06	MH45-100013R00V H24	Nº1	10.00	7.00	0.00	9.60	13.00	45.0
MH45-100013R10T06 H24	T06	MH45-100013R10V H24	Nº1	10.00	7.00	1.00	9.60	13.00	45.0
MH45-100013R15T06 H24	T06	MH45-100013R15V H24	Nº1	10.00	7.00	1.50	9.60	13.00	45.0
MH45-100019R15T06 H24	T06	MH45-100019R15V H24	Nº1	10.00	12.00	1.50	9.60	19.00	45.0
MH47-120016R05T08 H24	T08	MH47-120016R05V H24	Nº1	12.00	9.00	0.50	11.70	16.50	30.0
MH47-120016R10T08 H24	T08	MH47-120016R10V H24	Nº1	12.00	9.00	1.00	11.70	16.50	30.0
MH45-120016R05T08 H24	T08	MH45-120016R05V H24	Nº1	12.00	9.00	0.50	11.70	16.50	45.0
MH45-120016R00T08 H24	T08	MH45-120016R00V H24	Nº1	12.00	9.00	0.00	11.70	16.50	45.0
MH45-120016R10T08 H24	T08	MH45-120016R10V H24	Nº1	12.00	9.00	1.00	11.70	16.50	45.0
MH45-120016R15T08 H24	T08	MH45-120016R15V H24	Nº1	12.00	9.00	1.50	11.70	16.50	45.0

Наиме									
Исполнение резьбы тип 1		Исполнение резьбы тип 2							
Обозначение	Т	Обозначение	Резьба №	D, MM	L1, MM	r, MM	D1, MM	L, MM	ф, град
MH47-127016R04T08 H24	T08	MH47-127016R04V H24	Nº1	12.70	9.50	0.40	12.40	16.50	30.0
MH47-127016R08T08 H24	T08	MH47-127016R08V H24	Nº1	12.70	9.50	0.76	12.40	16.50	30.0
MH45-127016R00T08 H24	T08	MH45-127016R00V H24	Nº1	12.70	9.50	0.00	12.40	16.50	45.0
MH45-127016R04T08 H24	T08	MH45-127016R04V H24	Nº1	12.70	9.50	0.40	12.40	16.50	45.0
MH45-127016R08T08 H24	T08	MH45-127016R08V H24	Nº1	12.70	9.50	0.80	12.40	16.50	45.0
MH45-127016R15T08 H24	T08	MH45-127016R15V H24	Nº1	12.70	9.50	1.50	12.40	16.50	45.0
MH47-160020R05T10 H24	T10	MH47-160020R05V H24	№2	16.00	12.00	0.50	15.30	20.50	30.0
MH47-160020R10T10 H24	T10	MH47-160020R10V H24	№2	16.00	12.00	1.00	15.30	20.50	30.0
MH47-160020R16T10 H24	T10	MH47-160020R16V H24	№2	16.00	12.00	1.60	15.30	20.50	30.0
MH47-160020R20T10 H24	T10	MH47-160020R20V H24	№2	16.00	12.00	2.00	15.30	20.50	30.0
MH45-160020R05T10 H24	T10	MH45-160020R05V H24	№2	16.00	12.00	0.50	15.30	20.50	45.0
MH45-160020R10T10 H24	T10	MH45-160020R10V H24	№2	16.00	12.00	1.00	15.30	20.50	45.0
MH45-160020R16T10 H24	T10	MH45-160020R16V H24	№2	16.00	12.00	1.60	15.30	20.50	45.0
MH45-160020R20T10 H24	T10	MH45-160020R20V H24	№2	16.00	12.00	2.00	15.30	20.50	45.0
MH47-200025R10T12 H24	T12	MH47-200025R10V H24	Nº3	20.00	15.00	1.00	18.30	25.50	30.0
MH47-200025R20T12 H24	T12	MH47-200025R20V H24	Nº3	20.00	15.00	2.00	18.30	25.50	30.0
MH47-250037R08T15 H24	T15	MH47-250037R08V H24	Nº5	25.00	22.00	0.80	23.90	37.00	30.0

Рекомендации по выбору режимов резания

	ISO P				ISO M		ISO K			ISO	ISO N			
2250	Сталь углеродистая конструкц низколегир.		Сталь легированная < 35HRC		Нержавеющая сталь < 750 МПа		Чутун < 250 НВ		Титан чистый		Титановые сплавы < 850 МПа		Латунь и бронза (< 700 МПа)	
Ø	n	fv	n	fv	n	fv	n	fv	n	fv	n	fv	n	fv
6	7667	368	4964	238	2482	74	4964	179	6758	405	3162	190	3604	173
8	5746	414	3723	335	1862	89	3715	267	5075	518	2372	228	2703	211
10	4599	524	2975	393	1488	107	2975	286	4063	634	2040	282	2210	265
12	3834	598	2482	447	1241	141	2482	298	3383	670	1700	286	1913	321
16	2873	672	2040	453	935	146	1862	335	2533	623	1352	284	1437	345
20	2295	620	1624	438	744	147	1488	357	2032	561	1020	245	1216	328

n — частота вращения шпинделя, об/мин; fv — минутная подача, мм/мин. При работе с вылетом инструмента свыше 5D снижайте подачу на 20-70% в зависимости от вылета инструмента.


При изменении глубины и/или ширины резания режимы фрезерования определяются опытным путем. Вы можете запросить режимы резания у специалистов ЗАО «НИР» оформив техническое задание стр. 708

При работе по литейной корке снижайте режимы резания на 50% При работе инструментом без покрытия снижайте режимы на 10-30%.

Формулы по пересчету скорости резания и подачи на зуб приведены на стр. 691

ФРЕЗЕРНАЯ ГОЛОВКА С ПОЛНЫМ РАДИУСОМ СЕРИЯ MHR06, MHR12 И MHR16

Контурное фрезерование Подвод СОЖ: наружный Направление спирали: правое Количество режущих кромок: 2-4

Наим	еновани	е и тип резьбы								
Исполнение резьбы тип 1		Исполнение резьбы тип	2							
Обозначение	т	Обозначение	Резьба №	D, MM	z	L1, MM	R, MM	D1, MM	L, MM	ф, град
MHR16-050015T05 H24	T05			5.00	4	7.00	2.49	8.00	15.00	30.0
MHR16-060010T05 H24	T05			6.00	4	5.00	2.99	8.00	10.00	30.0
MHR12-080010T05 H24	T05			8.00	2	5.00	3.98	7.70	10.00	30.0
MHR06-080010T05 H24	T05			8.00	4	5.00	3.98	7.70	10.00	30.0
MHR12-100013T06 H24	T06	MHR12-100013V H24	Nº1	10.00	2	7.00	4.98	9.60	13.00	30.0
MHR06-100013T06 H24	T06	MHR06-100013V H24	Nº1	10.00	4	7.00	4.98	9.60	13.00	30.0
MHR12-120016T08 H24	T08	MHR12-120016V H24	Nº1	12.00	2	9.00	5.98	11.70	16.50	30.0
MHR16-120016T08 H24	T08	MHR16-120016V H24	Nº1	12.00	3	9.00	5.98	11.70	16.50	38.0
MHR06-120016T08 H24	T08	MHR06-120016V H24	Nº1	12.00	4	9.00	5.98	11.70	16.50	30.0
MHR12-127016T08 H24	T08	MHR12-127016V H24	Nº1	12.70	2	9.50	6.33	12.40	16.50	30.0
MHR06-127016T08 H24	T08	MHR06-127016V H24	Nº1	12.70	4	9.50	6.33	12.40	16.50	30.0
MHR12-160020T10 H24	T10	MHR12-160020V H24	Nº2	16.00	2	9.00	7.98	15.30	20.50	30.0
MHR06-160020T10 H24	T10	MHR06-160020V H24	№2	16.00	4	12.00	7.98	15.30	20.50	30.0
MHR06-200025T12 H24	T12	MHR06-200025V H24	Nº3	20.00	4	15.00	9.97	18.30	25.50	30.0
MHR06-250037T15 H24	T15	MHR06-250037V H24	Nº4	25.00	4	22.00	12.47	23.90	37.00	30.0

Рекомендации по выбору режимов резания

_ la		ISC) P		ISC	M	ISO	K		ISC	s		ISC	N
0,050	Сталь углеродистая	конструкц низколегир.	Сталь	лет ированная < 35HRC	Нержавеющая	CTAJIB < 750 MNa	НЛЛА	< 250 HB): 	MI AH THEI BIN	Титановые	CINIABBI < 850 M∏a	Латунь и бронза	(< 700 Mila)
Ø	n	fv	n	fv	n	fv	n	fv	n	fv	n	fv	n	fv
6	9660	657	8580	583	3220	129	7620	411	9660	773	4300	258	16100	1030
8	7240	652	6440	580	2420	131	5600	414	7240	840	3620	282	12070	1255
10	6000	696	5150	597	2090	167	4830	464	5800	870	2900	290	9660	1236
12	4830	676	4300	602	1750	175	4290	515	4830	869	2410	289	8050	1288
16	3620	652	3220	580	1410	183	3220	470	3620	796	1810	261	6040	1305
20	2900	696	2570	617	1130	181	2570	488	2890	751	1500	255	4830	1159

		ISI	0 P		ISC	M	ISC) K		ISI	S		ISO	N	
020	Сталь углеродистая	конструкц. низколегир.	Сталь	летированная < 35НRC	Нержавеющая	CTAJIB < 750 MNa	Чугун	< 250 HB)	MIGIBIN	Титановые	CINIABBI < 850 MITa	Латунь и бронза	(< 700 Mila)	
Ø	n	fv	n	fv	n	fv	n	fv	n	fv	n	fv	n	fv	
6	7300	250	5640	180	2980	84	6300	227	5970	215	2780	111	11270	383	
8	5470	274	4230	211	2240	90	4730	255	4730	236	2000	119	8450	507	
10	4370	280	3580	236	1790	97	3940	275	3780	265	1670	117	6760	541	
12	3650	306	2980	251	1490	104	3150	302	3150	310	1400	123	5640	564	
16	2980	358	2240	270	1200	115	2240	330	2370	326	1120	141	4230	634	
20	2490	373	1790	270	995	130	1890	340	1890	340	895	125	3382	656	

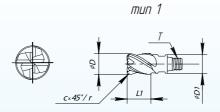
Режимы резания для получистовой обработки.

гежимы резания дия получиством оргаются.
П – частота вращения шпинделя, облимн; fv – минутная подача, мм/мин.
При работе с выпетом инструмента свыше 5D снижайте подачу на 20–70% в зависимости от вылета инструмента.
При изменении глубины и/или ширины резания режимы фрезерования определяются опытным путем.
Вы можете запросить режимы резания у специалистов 3AO «HIP» оформив техническое задание стр. 708

При работе по литейной корке снижайте режимы резания на 50%

При работе инструментом без покрытия снижайте режимы на 10-30%.

Формулы по пересчету скорости резания и подачи на зуб приведены на стр. 691



ФРЕЗЕРНАЯ ГОЛОВКА СЕРИИ МНЗ6 И МН86

Получистовая обработка Подвод СОЖ: наружный Направление спирали: правое Количество режущих кромок: 4

Наиме	новани	е и тип резьбы								
Исполнение резьбы тип 1		Исполнение резьбы тип	2							
Обозначение	т	Обозначение	Резьба №	D, MM	r, MM	ф, град	Z	L1, MM	D1, MM	L,
MH86-050015R00T05 H24	T05			5.00	0.00	45.0	4	7.00	8.00	15.00
MH86-060010R00T05 H24	T05			6.00	0.00	45.0	4	5.00	8.00	10.00
MH86-060008R05T05 H24	T05			6.00	0.50	45.0	4	4.00	5.80	8.50
MH86-080010R00T05 H24	T05			8.00	0.00	45.0	4	5.00	7.70	10.00
MH86-080015R00T05 H24	T05			8.00	0.00	45.0	4	9.00	7.70	15.00
MH36-080010R05T05 H24	T05			8.00	0.50	30.0	4	5.00	7.70	10.00
MH36-080015R05T05 H24	T05			8.00	0.50	30.0	4	9.00	7.70	15.00
MH86-080010R05T05 H24	T05			8.00	0.50	45.0	4	5.00	7.70	10.00
MH36-080010R10T05 H24	T05			8.00	1.00	30.0	4	5.00	7.70	10.00
MH86-080010R10T05 H24	T05			8.00	1.00	45.0	4	5.00	7.70	10.00
MH36-080010R15T05 H24	T05			8.00	1.50	30.0	4	5.00	7.70	10.00
MH86-080010R15T05 H24	T05			8.00	1.50	45.0	4	5.00	7.70	10.00
MH86-100013R00T06 H24	T06	MH86-100013R00V H24	Nº1	10.00	0.00	45.0	4	7.00	9.60	13.00
MH86-100019R00T06 H24	T06	MH86-100019R00V H24	Nº1	10.00	0.00	45.0	4	12.00	9.60	19.00
MH36-100013R05T06 H24	T06	MH36-100013R05V H24	Nº1	10.00	0.50	30.0	4	7.00	9.60	13.00
MH86-100013R05T06 H24	T06	MH86-100013R05V H24	Nº1	10.00	0.50	45.0	4	7.00	9.60	13.00
MH36-100013R10T06 H24	T06	MH36-100013R10V H24	Nº1	10.00	1.00	30.0	4	7.00	9.60	13.00
MH86-100013R10T06 H24	T06	MH86-100013R10V H24	Nº1	10.00	1.00	45.0	4	7.00	9.60	13.00
MH86-120016R00T08 H24	T08	MH86-120016R00V H24	Nº1	12.00	0.00	45.0	4	9.00	11.70	16.50
MH86-120023R00T08 H24	T08	MH86-120023R00V H24	Nº1	12.00	0.00	45.0	4	14.00	11.70	23.00

Наиме	новани	е и тип резьбы								
Исполнение резьбы тип 1		Исполнение резьбы тип	2							
Обозначение	Т	Обозначение	Резьба №	D, MM	r, MM	ф, град	Z	L1, MM	D1, MM	L, MM
MH36-120016R05T08 H24	T08	MH36-120016R05V H24	Nº1	12.00	0.50	30.0	4	9.00	11.70	16.50
MH86-120016R05T08 H24	T08	MH86-120016R05V H24	Nº1	12.00	0.50	45.0	4	9.00	11.70	16.50
MH36-120016R10T08 H24	T08	MH36-120016R10V H24	Nº1	12.00	1.00	30.0	4	9.00	11.70	16.50
MH86-120016R10T08 H24	T08	MH86-120016R10V H24	Nº1	12.00	1.00	45.0	4	9.00	11.70	16.50
MH86-160020R00T10 H24	T10	MH86-160020R00V H24	№2	16.00	0.00	45.0	4	12.00	15.30	20.50
MH36-160020R05T10 H24	T10	MH36-160020R05V H24	№2	16.00	0.50	30.0	4	12.00	15.30	20.50
MH86-160020R05T10 H24	T10	MH86-160020R05V H24	№2	16.00	0.50	45.0	4	12.00	15.30	20.50
MH36-160020R10T10 H24	T10	MH36-160020R10V H24	№2	16.00	1.00	30.0	4	12.00	15.30	20.50
MH86-160020R10T10 H24	T10	MH86-160020R10V H24	№2	16.00	1.00	45.0	4	12.00	15.30	20.50
MH36-160020R15T10 H24	T10	MH36-160020R15V H24	№2	16.00	1.50	30.0	4	12.00	15.30	20.50
MH86-160020R15T10 H24	T10	MH86-160020R15V H24	№2	16.00	1.50	45.0	4	12.00	15.30	20.50
MH36-160020R20T10 H24	T10	MH36-160020R20V H24	№2	16.00	2.00	30.0	4	12.00	15.30	20.50
MH86-160020R20T10 H24	T10	MH86-160020R20V H24	№2	16.00	2.00	45.0	4	12.00	15.30	20.50
MH36-160020R30T10 H24	T10	MH36-160020R30V H24	№2	16.00	3.00	30.0	4	12.00	15.30	20.50
MH86-160020R30T10 H24	T10	MH86-160020R30V H24	№2	16.00	3.00	45.0	4	12.00	15.30	20.50
MH36-160020R40T10 H24	T10	MH36-160020R40V H24	№2	16.00	4.00	30.0	4	12.00	15.30	20.50
MH86-160020R40T10 H24	T10	MH86-160020R40V H24	№2	16.00	4.00	45.0	4	12.00	15.30	20.50
MH86-200025R00T12 H24	T12	MH86-200025R00V H24	Nº3	20.00	0.00	45.0	4	15.00	18.30	25.50
MH36-200025R05T12 H24	T12	MH36-200025R05V H24	Nº3	20.00	0.50	30.0	4	15.00	18.30	25.50
MH36-200025R10T12 H24	T12	MH36-200025R10V H24	Nº3	20.00	1.00	30.0	4	15.00	18.30	25.50
MH36-200025R20T12 H24	T12	MH36-200025R20V H24	Nº3	20.00	2.00	30.0	4	15.00	18.30	25.50
MH36-200025R30T12 H24	T12	MH36-200025R30V H24	№3	20.00	3.00	30.0	4	15.00	18.30	25.50

S NI 850-1200MПа

S Ni ≤850M∏a

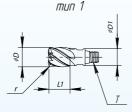
Рекомендации по выбору режимов резания

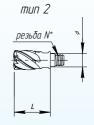
					1	-	- P) P -		Podam					
	ISC) P		ISC	M		ISC	K			ISC	S		
0,250	Стапь	до 48 НВС	Нержавеющая	crans < 750 MNa	Нержавеющая	CTAIN > 750 MITA	H/1/h	>250 HB	Титановые	SSO-1200 MITA	Жаропрочные	CINIABBI < 850 MITA	Жаропрочные	SINIABBI > 850 MNa
Ø	n	fv	n	fv	n	fv	n	fv	n	fv	n	fv	n	fv
4	6000	360	5500	290	2750	110	8300	300	6300	325	4500	180	2600	126
5	5400	430	4650	370	2350	210	6350	430	5100	350	3750	220	2200	165
6	4250	510	4000	450	2070	270	5800	580	4100	450	3000	240	2070	200
8	3800	605	3200	560	1600	320	4750	720	3000	570	2400	300	1470	240
10	3100	750	2700	700	1270	350	4000	900	2550	610	2200	380	1270	270
12	2650	870	2250	820	1060	370	3200	960	2100	700	1830	430	1050	310
14	2350	950	2050	900	1000	400	2800	1050	1900	750	1600	480	930	335
16	2000	1000	1800	1050	875	400	2500	1200	1700	800	1400	560	860	375
18	1750	1060	1600	1150	810	430	2300	1300	1600	850	1300	620	800	420
20	1600	1150	1430	1200	700	420	2200	1400	1350	900	1200	690	700	430
25	1350	1270	1210	1040	510	400	1800	1600	1150	1000	970	770	560	470

_	100	JF		130	ואו כ		100) N			130	Jo			
0.20	Сталь	до 48 НВС	Нержавеющая	Classes 750 MIIa	Нержавеющая	5750 MNa > 750 MNa	Чугун	>250 HB	Титановые	850-1200 MNa	Жаропрочные	CHJABBI < 850 MNa	Жаропрочные	CIIJABBI > 850 MNa	
Ø	n	fv	n	fv	n	fv	n	fv	n	fv	n	fv	n	fv	
5	3350	135	3000	110	1250	50	4150	160	1450	64	1600	76	1000	50	
6	3000	165	2650	130	1100	57	3450	190	1270	71	1430	85	900	54	
8	2200	190	2000	160	870	63	2600	220	1000	80	1100	95	600	64	
10	1850	220	1600	190	700	70	2100	270	800	92	900	110	540	69	
12	1550	260	1350	210	610	85	1800	320	660	106	740	125	450	73	
16	1250	300	1100	220	500	100	1400	370	560	135	600	140	360	90	
20	1000	350	870	210	400	115	1200	410	460	140	500	150	300	105	
25	800	350	700	200	320	110	950	380	350	120	400	130	250	100	

n — частота вращения шпинделя, об/мин; fv — минутная подача, мм/мин.
При работе с вылетом инструмента свыше 50 снижайте подачу на 20—70% в зависимости от вылета инструмента.
При изменении глубины и/или ширины резания режимы фрезерования определяются опытным путем.
Вы можете запросить режимы резания у специалистов 3AO «НИР» оформив техническое задание стр. 708
При работе по литейной корке снижайте режимы резания на 50%.
При работе инструментом без покрытия снижайте режимы на 10—30%.
Формулы по пересчету скорости резания и подачи на зуб приведены на стр. 691

ISO P




ГОЛОВКА С ДВОЙНЫМ РАДИУСОМ СЕРИЯ МН46 И МН64

Получистовая обработка Подвод СОЖ: наружный Направление спирали: правое Количество режущих кромок: 4-6

MH64-200025T12 H16

MH46-250025T15 H16

MH46-254025T15 H16

Наименование и тип резьбы

T12

T15

T15

MH64-200025V H16

MH46-250025V H16

MH46-254025V H16

Ne3 | 20.00 | 4 | 1.00 | 18.45 | 25.50 | 0.67 | 4.3 | 2.6

Ne4 25.00 6 1.20 23.90 25.00 0.67 4.3 2.6

№4 25.40 6

1.20

23.90 | 25.00 | 0,67 | 4,3 | 2,6

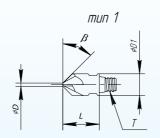
Рекомендации по выбору режимов резания

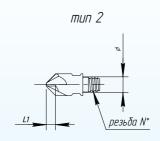
	IS	0 K			ISC	H		
0.750	HALAN	×300 HB	Закаленные стали		Закаленные стали	55-60 HRC	Закаленные стали	60-65 HRC
Ø	n	fv	n	fv	n	fv	n	fv
6	4800	2800	3200	1250	3500	1300	1850	660
8	3900	3250	2500	1500	2800	1650	1500	860
10	3000	3600	2000	1700	2450	2050	1350	1000
12	2600	3900	1700	2000	2000	2150	1050	1100
16	2000	3900	1300	2400	1600	2600	880	1200
20	1550	3700	1050	2200	1250	2400	660	1000

Не допускается обработка с глубиной резания более Аргтах n – частота вращения шпинделя, об/мин; tv – минутная подача, мм/мин. При работе с вылетом инструмента сыше 5D снижайте подачу на 20–70% в зависимости от вылета инструмента.

тури расоте с выпечени янструмента съвыше зо сняжале подату на 22-10 лв завысимости от выпеча постру При изменении глубины и/или ширины резания режимы фрезерования определяются опытным путем. Вы можете запросить режимы резания у специалистов ЗАО «НИР» оформив техническое задание стр. 708 При работе инструментом без покрытия снижайте режимы на 10-30%.

Формулы по пересчету скорости резания и подачи на зуб приведены на стр. 691





ОБРАБОТКА ФАСОК СЕРИЯ МНЕ

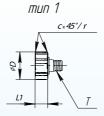
Получистовая обработка Подвод СОЖ: наружный Направление спирали: правое Количество режущих кромок: 4-6

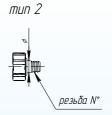
Наиг	иенование	и тип резьбы							
Исполнение резьбы тип	1	Исполнение резьбы ти	п 2						
Обозначение	Т	Обозначение	Резьба №	β, град	D1, MM	z	D2, MM	L1, MM	l, MM
MHF30-100013T06 H24	T06	MHF30-100013V H24	Nº1	30.0	10.0	4	2.00	2,30	13.00
MHF30-120016T08 H24	T08	MHF30-120016V H24	Nº1	30.0	12.0	4	2.00	2,90	16.50
MHF30-160020T10 H24	T10	MHF30-160020V H24	№2	30.0	16.0	6	3.00	3,70	20.50
MHF30-200025T12 H24	T12	MHF30-200025V H24	Nº3	30.0	20.0	6	5,00	4,30	25.50
MHF30-250037T15 H24	T15	MHF30-250037V H24	Nº4	30.0	25.0	6	6,00	5,40	37.00
MHF45-100013T06 H24	T06	MHF45-100013V H24	Nº1	45.0	10.0	4	2,00	4,00	13.00
MHF45-120016T08 H24	T08	MHF45-120016V H24	Nº1	45.0	12.0	4	2,00	5,00	16.50
MHF45-160020T10 H24	T10	MHF45-160020V H24	№2	45.0	16.0	6	3.00	6,50	20.50
MHF45-200025T12 H24	T12	MHF45-200025V H24	№3	45.0	20.0	6	5.00	7,50	25.50
MHF45-250037T15 H24	T15	MHF45-250037V H24	Nº4	45.0	25.0	6	5.00	10,00	37.00
MHF60-100013T06 H24	T06	MHF60-100013V H24	Nº1	60	10.0	4	1.60	7,30	13.00
MHF60-120016T08 H24	T08	MHF60-120016V H24	Nº1	60.0	12.0	4	3.00	7,8	16.50
MHF60-160020T10 H24	T10	MHF60-160020V H24	№2	60.0	16.0	6	4.00	10,5	20.50
MHF60-200025T12 H24	T12	MHF60-200025V H24	Nº3	60.0	20.0	6	5.00	13	25.50
MHF60-250037T15 H24	T15	MHF60-250037V H24	Nº4	60.0	25.0	6	5.00	17,3	37.00

437

SNI 850-1200M∏a S NI ≤850MПå STI 850-1200МПа S TI ≤850M∏a

К >200НВ

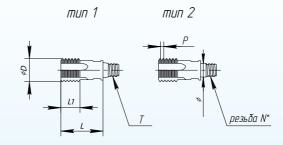

K ≪ 200HB Μ


M ≤750MΠa P 48HRC <300HB

ОБРАБОТКА ПАЗОВ И КАНАВОК СЕРИЯ МНО

Получистовая обработка Подвод СОЖ: наружный Направление спирали: правое

Наим	енование	и тип резьбы						
Исполнение резьбы тип 1		Исполнение резьбы тип 2	2					
Обозначение	Ts	Обозначение	Резьба №	D, MM	L1±0,02, MM	Ap max,	Z	r, MM
MHD-135030R04T05 H24	T05			13.50	3.00	2.65	6	0.40
MHD-135040R04T05 H24	T05			13.50	4.00	2.65	6	0.40
MHD-160020R04T06 H24	T06	MHD-160020R04V H24	Nº1	16.00	2.00	3.00	6	0.40
MHD-160030R04T06 H24	T06	MHD-160030R04V H24	Nº1	16.00	3.00	3.00	6	0.40
MHD-160040R04T06 H24	T06	MHD-160040R04V H24	Nº1	16.00	4.00	3.00	6	0.40
MHD-165020R04T06 H24	T06	MHD-165020R04V H24	Nº1	16.50	2.00	3.25	6	0.40
MHD-165030R04T06 H24	T06	MHD-165030R04V H24	Nº1	16.50	3.00	3.25	6	0.40
MHD-165040R04T06 H24	T06	MHD-165040R04V H24	Nº1	16.50	4.00	3.25	6	0.40
MHD-195060R02T08 H24	T08	MHD-195060R02V H24	Nº1	19.50	6.00	4.45	6	0.20
MHD-225060R02T08 H24	T08	MHD-225060R02V H24	Nº1	22.50	6.00	5.95	6	0.20
MHD-195040R04T08 H24	T08	MHD-195040R04V H24	№2	19.50	4.00	3.45	6	0.40
MHD-195050R04T08 H24	T08	MHD-195050R04V H24	№2	19.50	5.00	3.45	6	0.40
MHD-195060R04T08 H24	T08	MHD-195060R04V H24	№2	19.50	6.00	3.45	6	0.40
MHD-225040R04T08 H24	T08	MHD-225040R04V H24	№2	22.50	4.00	4.90	6	0.40
MHD-225050R04T08 H24	T08	MHD-225050R04V H24	№2	22.50	5.00	4.95	6	0.40
MHD-225060R04T08 H24	T08	MHD-225060R04V H24	№2	22.50	6.00	4.95	6	0.40
MHD-225085R04T08 H24	T08	MHD-225085R04V H24	№2	22.50	8.00	4.95	6	0.40
MHD-250050R04T08 H24	T08	MHD-250050R04V H24	№2	25.00	5.00	5.90	6	0.40
MHD-250060R04T08 H24	T08	MHD-250060R04V H24	№2	25.00	6.00	5.90	6	0.40
MHD-250080R04T08 H24	T08	MHD-250080R04V H24	№2	25.00	8.00	5.90	6	0.40
MHD-250050R04T10 H24	T10	MHD-250050R04V H24	Nº3	25.00	5.00	4.30	6	0.40
MHD-250060R04T10 H24	T10	MHD-250060R04V H24	Nº3	25.00	6.00	4.30	6	0.40
MHD-250080R04T10 H24	T10	MHD-250080R04V H24	Nº3	25.00	8.00	4.30	6	0.40



НАРЕЗАНИЕ РЕЗЬБЫ СЕРИЯ МНТ01

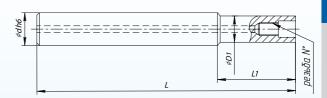
Получистовая обработка Подвод СОЖ: наружный Направление спирали: правое Количество режущих кромок: 3-6

Наим	енование	в и тип резьбы							
Исполнение резьбы тип 1		Исполнение резьбы тип	2						
Обозначение	т	Обозначение	Резьба №	Р,	D отв. мин,	D, MM	Z	L1, MM	L, MM
MHT01-100075T05 H24	T05	MHT01-100075V H24	Nº1	0.75	14	10.00	4	6.00	12.75
MHT01-100100T05 H24	T05	MHT01-100100V H24	Nº1	1.00	14	10.00	4	6.00	12.75
MHT01-100150T05 H24	T05	MHT01-100150V H24	Nº1	1.50	14	10.00	4	6.00	12.75
MHT01-120150T06 H24	T06	MHT01-120150V H24	Nº2	1.50	16	12.00	4	7.50	17.05
MHT01-120200T06 H24	T06	MHT01-120200V H24	Nº2	2.00	16	12.00	4	8.00	17.05
MHT01-160150T08 H24	T08	MHT01-160150V H24	Nº3	1.50	22	16.00	6	12.00	20.85
MHT01-160200T08 H24	T08	MHT01-160200V H24	Nº3	2.00	22	16.00	5	12.00	20.85
MHT01-154250T08 H24	T08	MHT01-154250V H24	Nº3	2.50	22	15.40	5	12.50	20.85
MHT01-160300T08 H24	T08	MHT01-160300V H24	Nº3	3.00	22	16.00	3	12.00	20.85

>200HE

ОПРАВКА ТВЕРДОСПЛАВНАЯ С ЦИЛИНДРИЧЕСКОЙ ШЕЙКОЙ СЕРИЯ MHZ1

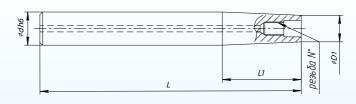
Подвод СОЖ: внутренний **Шейка**: цилиндрическая



Обозначение	D, MM	L1, MM	D1, MM	L, MM	резьба
MHZ1-100070H	10	20	9,5	70	Nº1
MHZ1-100100H	10	40	9,5	100	Nº1
MHZ1-100130H	10	70	9,5	130	Nº1
MHZ1-120080H	12	20	11,5	80	Nº1
MHZ1-120100H	12	40	11,5	100	Nº1
MHZ1-120130H	12	70	11,5	130	Nº1
MHZ1-160100H	16	40	15,5	100	№2
MHZ1-160150H	16	80	15,5	150	№2
MHZ1-160200H	16	120	15,5	200	Nº2
MHZ1-200100H	20	40	19,5	100	Nº3
MHZ1-200150H	20	80	19,5	150	Nº3
MHZ1-200200H	20	120	19,5	200	Nº3
MHZ1-200250H	20	160	19,5	250	Nº3
MHZ1-250150H	25	70	24,3	150	Nº4
MHZ1-250200H	25	100	24,3	200	Nº4
MHZ1-250250H	25	150	24,3	250	Nº4
MHZ1-250300H	25	200	24,3	300	Nº4
MHZ1-320150H	32	70	29	150	Nº5
MHZ1-320200H	32	120	29	200	Nº5
MHZ1-320250H	32	150	29	250	№5
MHZ1-320300H	32	200	29	300	Nº5
MHZ1-320350H	32	250	29	350	Nº5

ОПРАВКА ТВЕРДОСПЛАВНАЯ С ЦИЛИНДРИЧЕСКОЙ ШЕЙКОЙ СЕРИЯ MHZ4

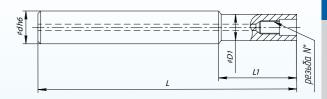
Подвод СОЖ: внутренний **Шейка:** цилиндрическая



Обозначение	D, MM	L1, MM	D1, MM	L,	резьба
MHZ4-080070T05H	8	18	7,6	70	T05
MHZ4-080090T05H	8	38	7,6	90	T05
MHZ4-080100T06H	8	58	7,6	110	T05
MHZ4-100070T06H	10	18	9,6	70	T06
MHZ4-100090T06H	10	38	9,6	90	T06
MHZ4-100110T06H	10	58	9,6	110	T06
MHZ4-100150T06H	10	98	9,6	150	T06
MHZ4-120070T08H	12	18	11,5	70	T08
MHZ4-120090T08H	12	38	11,5	90	T08
MHZ4-120110T08H	12	58	11,5	110	T08
MHZ4-120130T08H	12	78	11,5	130	T08
MHZ4-160090T10H	16	38	15,2	90	T10
MHZ4-160110T10H	16	58	15,2	110	T10
MHZ4-160130T10H	16	78	15,2	130	T10
MHZ4-160150T10H	16	98	15,2	150	T10
MHZ4-200090T12H	20	37	18,3	90	T12
MHZ4-200130T12H	20	77	18,3	130	T12
MHZ4-200200T12H	20	117	18,3	200	T12
MHZ4-250120T15H	25	58	23,9	120	T15
MHZ4-250170T15H	25	98	23,9	170	T15
MHZ4-250250T15H	25	148	23,9	250	T15

ОПРАВКА ТВЕРДОСПЛАВНАЯ С КОНИЧЕСКОЙ ШЕЙКОЙ СЕРИЯ MHZ5

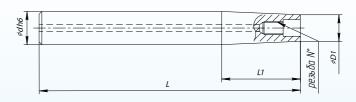
Подвод СОЖ: внутренний Шейка: коническая Корпус: стальной


Обозначение	D, MM	L1, MM	D1, MM	L, MM	резьба
MHZ5-120110T05H	12	55	7,6	110	T05
MHZ5-120130T05H	12	76	7,6	130	T05
MHZ5-160150T05H	16	90	7,6	150	T05
MHZ5-160150T06H	16	94	9,6	150	T06
MHZ5-160170T06H	16	115	9,6	170	T06
MHZ5-160130T08H	16	76	11,5	130	T08
MHZ5-160150T08H	16	96	11,5	150	T08
MHZ5-200170T08H	20	110	11,5	170	T08
MHZ5-200150T10H	20	96	15,2	150	T10
MHZ5-200170T10H	20	116	15,2	170	T10
MHZ5-200190T10H	20	140	15,2	190	T10
MHZ5-200210T10H	20	160	15,2	210	T10
MHZ5-250180T12H	25	114	18,3	180	T12
MHZ5-250250T12H	25	135	18,3	250	T12
MHZ5-320250T15H	32	143	23,9	250	T15
MHZ5-320300T15H	32	195	23,9	300	T15

ОПРАВКА СТАЛЬНАЯ С ЦИЛИНДРИЧЕСКОЙ ШЕЙКОЙ СЕРИЯ MHZ2, MHZ6

Подвод СОЖ: внутренний Шейка: цилиндрическая

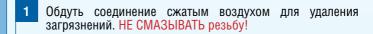
Корпус: стальной



Обозначение	D, MM	L1, MM	D1, MM	L, MM	резьба
		MHZ2			
MHZ2-100070C	10	20	9,5	70	Nº1
MHZ2-120080C	12	20	11,5	80	Nº1
MHZ2-160100C	16	40	15,2	100	№2
MHZ2-200100C	20	40	18,3	100	№3
MHZ2-250150C	25	70	23,9	150	Nº4
MHZ2-320150C	32	70	29	150	№5
		MHZ6			
MHZ6-080060T05C	8	12	7,6	60	T05
MHZ6-100075T06C	10	17	9,6	75	T06
MHZ6-120090T08C	12	13	11,5	90	T08
MHZ6-120090-LT08C	12	38	11,5	90	T08
MHZ6-120090-XLT08C	12	43	11,5	90	T08
MHZ6-160100T10C	16	16	15,2	100	T10
MHZ6-160100-LT10C	16	48	15,2	100	T10
MHZ6-200120T12C	20	20	18,3	120	T12
MHZ6-200120-LT12C	20	66	18,3	120	T12
MHZ6-250135T15C	25	33	23,9	135	T15
MHZ6-250175T15C	25	62	23,9	175	T15

ОПРАВКА СТАЛЬНАЯ С КОНИЧЕСКОЙ ШЕЙКОЙ СЕРИЯ MHZ3, MHZ7

Подвод СОЖ: внутренний Шейка: коническая Корпус: стальной


06 D, L1, D1, L,6-									
Обозначение	MM	MM	MM	L,	резьба				
MHZ2									
MHZ2-100070C	10	20	9,5	70	Nº1				
MHZ2-120080C	12	20	11,5	80	Nº1				
MHZ2-160100C	16	40	15,2	100	№2				
MHZ2-200100C	20	40	18,3	100	Nº3				
MHZ2-250150C	25	70	23,9	150	Nº4				
MHZ2-320150C	32	70	29	150	Nº5				
		MHZ6							
MHZ6-080060T05C	8	12	7,6	60	T05				
MHZ6-100075T06C	10	17	9,6	75	T06				
MHZ6-120090T08C	12	13	11,5	90	T08				
MHZ6-120090-LT08C	12	38	11,5	90	T08				
MHZ6-120090-XLT08C	12	43	11,5	90	T08				
MHZ6-160100T10C	16	16	15,2	100	T10				
MHZ6-160100-LT10C	16	48	15,2	100	T10				
MHZ6-200120T12C	20	20	18,3	120	T12				
MHZ6-200120-LT12C	20	66	18,3	120	T12				
MHZ6-250135T15C	25	33	23,9	135	T15				
MHZ6-250175T15C	25	62	23,9	175	T15				

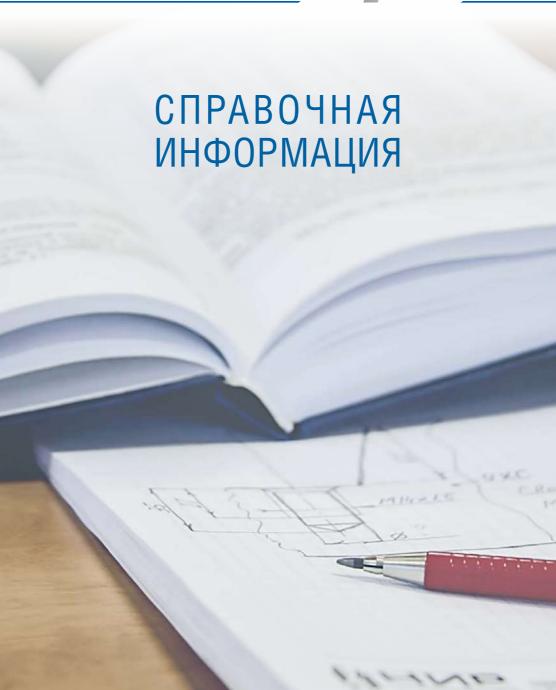
ИНСТРУКЦИЯ ПО УСТАНОВКЕ И ЗАМЕНЕ ФРЕЗЕРНОЙ ГОЛОВКИ

Усилие затяжки для фрезерных головок

Ø фрезы	резьба	ключ	момент затяжки, Н*м
8	T05	6×4	7
10	T06	8×5	10
12	T08	10×7	15
16	T10	13×8	28
20	T12	16×9	28
25	T15	20	40
10	Nº1	8	6,5
12	Nº1	10	6,5
16	№2	13	10
20	Nº3	17	12
25	Nº4	22	15
30	Nº5	27	20
32	Nº5	27	20

2 Закрепить оправку в патроне станка.

Закрутить головку вручную до упора, не прилагая усилий. Под головкой останется зазор. Во избежание порезов использовать перчатки.



4 Используя соответствующий ключ, затянуть головку с усилием указанным в таблице для используемого типа соединения. Превышение указанного значения может привести к повреждению резьбового соединения, и выходу из строя оправки.

5 Убедитесь в отсутствии зазора между головкой и оправкой.

РЕКОМЕНДАЦИИ ПО ПОДБОРУ ИНСТРУМЕНТА

ФРЕЗЕРОВАНИЕ ВЫБОР СЕРИИ ФРЕЗ ОБЩЕГО ПРИМЕНЕНИЯ

ПРЕИМУЩЕСТВА ФРЕЗ ГРУППЫ

«ОБЩЕЕ ПРИМЕНЕНИЕ, ОБРАБОТКА МАТЕРИАЛОВ ДО ТВЕРДОСТИ HRC<35»

СЕРИИ

M124, M129, M131, M181, M185, M110, M190, M145, M144, M212, M206, M582- M584, M685-M687-M689

- Острая заточка (позитивная) для снижение сил резания.
- Для вязких материалов дающих длинную тянущуюся стружку. Если в процессе обработки появляется такая стружка, тянется заусенец, идет заминание материала и наблюдается налипание, то так же рекомендуется перейти на данную серию фрез.
- Данная группа фрез является наиболее универсальной и может обрабатывать наибольшее число материалов. Если не известна марка обрабатываемого материала и его твердость, рекомендуется отдавать предпочтение данной группе фрез.
- Рекомендуется применять данную группу фрез при обработке с низкой жесткостью технологической системы СПИД (Станок, приспособление, инструмент, деталь).
- Рекомендуется применять данную группу фрез на универсальных станках.
- Обработка тонкостенных деталей, кроме деталей из алюминиевых сплавов.
- Рекомендуется при обработке титановых и жаропрочных сплавов.

ПРЕИМУЩЕСТВА ФРЕЗ ГРУППЫ

«ОБРАБОТКА КОНСТРУКЦИОННЫХ И НЕРЖАВЕЮЩИХ СТАЛЕЙ, ЧУГУНА, ТИТАНОВЫХ И ЖАРОПРОЧНЫХ СПЛАВОВ»

СЕРИИ

M122, M128, M130, M182, M186, M136, M189, M142, M202, M209, M532- M534, M635-M637-M639

- Более прочная режущая кромка.
- Высокая стойкость режущей кромки.
- Рекомендуется при скалывании и выкрашивании режущих кромок инструмента в процессе обработки.
- Рекомендуется для обработки материалов не склонных к налипанию. Обработка конструкционных и нержавеющих сталей твердостью выше 35HRC, чугуна.
- Рекомендуется при чистовой обработке.

ВЫБОР ЧИСЛА ЗУБЬЕВ ФРЕЗЫ

Количество зубьев рекомендуется выбирать по таблице

Ширина фрезерования	Количество зубьев
100%-50%	2-3
50%-25%	4-5
25% и менее	6-8

БОЛЬШЕ ЗУБЬЕВ (МЕНЬШЕ ШАГ)

- Выше производительность обработки.
- Меньше пространства для стружки.
- Для хороших условий обработки и хрупких материалов.
- Требуется высокая жесткость технологической системы СПИД.
- Необходима большая мощность привода.
- Большее число зубьев рекомендуется для закаленных материалов.

МЕНЬШЕ ЗУБЬЕВ (КРУПНЫЙ ШАГ)

- Для производительной обработки при недостаточной мощности привода и жесткости технологической системы СПИД.
- Большой вылет инструмента.
- Для тяжелых условий обработки.
- Достаточно места между зубьями для стружки.

ВЫБОР УГЛА СПИРАЛИ

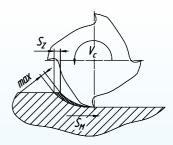
ПРЕИМУЩЕСТВА УВЕЛИЧЕННОГО УГЛА СПИРАЛИ:

- Высокая стойкость вследствие увеличения кинематических передних углов. Это позволяет назначать меньшие значения передних углов, повысить прочность зуба и увеличить в 1,5-2 раза подачу на зуб(для высокопрочных материалов).
- Плавность фрезерования.

ПРЕИМУЩЕСТВА УГЛА СПИРАЛИ 30 ГРАДУСОВ:

- Снижается суммарная нагрузка на инструмент. Рекомендуется при большом вылете инструмента.
- Рекомендуется при большой подаче на зуб.

НАПРАВЛЕНИЕ ФРЕЗЕРОВАНИЯ

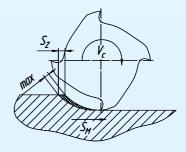

Попутное фрезерование – направление движения подачи совпадает с направлением вращения инструмента

плюсы:

- надежное удаление стружки
- меньший износ режущей кромки
- меньше потребляемая мощность
- лучше качество поверхности

минусы:

- большая ударная нагрузка на зуб
- неравномерный припуск оказывает влияние
- выше нагрузка на механизм подачи станка


Встречное фрезерование – направление движения подачи противоположно направлению вращения инструмента

плюсы:

- нет зависимости от неравномерного припуска
- возможность эффективной обработки деталей, имеющих «корку» и упрочненные наружные спои
- плавность процесса резания

минусы:

- склонность к вибрациям
- силы резания «отрывают» заготовку от стола или приспособления
- наклеп обрабатываемой поверхности и более грубая шероховатость
- возможность вторичного перерезания стружки
- более быстрый износ режущей кромки

Общие рекомендации по фрезерованию:

- Предпочтительнее использовать попутное фрезерование.
- Работать с минимально возможным вылетом инструмента.
- Использовать инструмент, соответствующий мощности и жесткости оборудования.
- Для универсальных станков, старых и модернизированных станков не рекомендуется инструмент с нулевыми и отрицательными передними углами, предпочтение необходимо отдавать острозаточенному инструменту, а обработку высокопрочных и твердых материалов производить на заниженных режимах.
- Избегать осевого врезания, предпочтительнее применение врезания под углом и винтовой интерполяции.

РЕКОМЕНДАЦИИ ПО ПОДБОРУ ИНСТРУМЕНТА ОБРАБОТКА ОТВЕРСТИЙ

СЕРИИ СВЕРП

D121, **D122**, **D123**, **D124**, **D221**, **D222**, **D223**, **D224** за счет более прочной режущей кромки позволяют работать на более высоких режимах резания.

СЕРИИ СВЕРЛ

D177 и **D277** предназначены для отверстий с повышенными требованиями к точности и прямолинейности. Специальная геометрия вершины обеспечивает геометрическую точность получаемого отверстия. Так же рекомендуются для станков с низкой жесткостью и маломощных шпинделей.

СЕРИИ СВЕРЛ

D155 и **D255** специально разработаны для обработки алюминия, магниевых и медных сплавов.

СЕРИИ СВЕРЛ

D181, **D281**, **D182**, **D283** предназначены для глубоких отверстий с повышенными требованиями к точности и прямолинейности. Специальная геометрия вершины и стружечных канавок обеспечивает высокую геометрическую точность и прямолинейность получаемого отверстия глубиной до 15D.

РЕКОМЕНДАЦИИ ПО ВЫБОРУ СПЛАВА

Обрабатываемый материал		Фрезерование			Сверление,	D	
		Чистовое	Общее применение	Черновое	зенкерование	Развертки	
Алюмин	ий и сплавы	H20, H10, H23	H20, H23	H20, H23	H20	H10	
Твердые стали	>52 HRC	H16-без СОЖ H14-с СОЖ	H16-без СОЖ H14-с СОЖ	H24, H25	H24, H25	H14, H15, H10	
H.m.	Серый	H24, H25	H24	H34, H35	H24, H25	H14, H15, H10	
Чугун	Высокопрочный	H24, H25	H24, H25	H34, H35	H24, H25	H14, H15, H10	
	Конструкционная	H14, H15	H24, H25	H34, H35	H24, H25	H14, H15, H10	
Сталь	Углеродистая	H14, H15	H24, H25	H34, H35	H24, H25	H14, H15, H10	
	Легированная	H14, H15	H24, H25	H34, H35	H24, H25	H14, H15, H10	
Нержавеющая	Аустенитная	H14	H24	H34	H24	H14, H10	
сталь	Мартенситная	H14	H24	H34	H24	H14, H10	
Титанов	Титановые сплавы		H24, H20	H34, H30	H24, H25	H14, H10	
Жаропрочны	е стали и сплавы	H14, H10	H24, H20	H34, H30	H24, H25	H14, H10	

Приоритет выбора сплава согласно порядку, указанному в таблице

ТАБЛИЦА ДОПУСКОВ ПО ГОСТ 25346-89

		Диаметр, мм									
	>1 ≤ 3	> 3 ≤ 6	> 6 ≤ 10	>10 ≤ 18	>18 ≤ 30	> 30 ≤ 50	> 50 ≤ 80	> 80 ≤ 120			
		допуска, мкм									
e8	-14/-28	-20 / -38	-25 / -47	-32 / -59	-40 / -73	-50 / -89	-60/-106	-72/-126			
f6	-6/-12	-10/-18	-13/-22	-16/-27	-20 / -33	-25 / -41	-30 / -49	- 36 / -58			
f7	-6/-16	-10/-22	-13/-28	-16/-34	-20 / -41	-25 / -50	-30 / -60	-36 / -71			
h6	0/-6	0/-8	0/-9	0/-11	0/-13	0/-16	0/-19	0/-22			
h7	0/-10	0/-12	0/-15	0/-18	0/-21	0/-25	0/-30	0/-35			
h8	0/-14	0/-18	0/-22	0/-27	0/-33	0/-39	0/-46	0/-54			
h9	0/-25	0/-30	0/-36	0/-43	0/-52	0/-62	0/-74	0/-87			
h10	0/-40	0/-48	0/-58	0/-70	0/-84	0/-100	0/-120	0/-140			
h11	0/-60	0/-75	0/-90	0/-110	0/-130	0/-160	0/-190	0 / -220			
h12	0/-100	0/-120	0/-150	0/-180	0/-210	0 / -250	0 / -300	0 / -350			
k10	+40/0	+48/0	+58/0	+70/0	+84/0	+100/0	+120/0	+ 140/0			
k12	+100/0	+120/0	+150/0	+180/0	+210/0	+250 / 0	+300/0	+350/0			
m7	+2/+12	+4/+16	+6 / +21	+7 / +25	+8 / +29	+9 / +34	+11 /+41	+13/+48			
js14	+/- 125	+/- 150	+/-180	+/-215	+/- 260	+/-310	+/- 370	+/- 435			
js16	+/- 300	+/- 375	+/- 450	+/- 550	+/- 650	+/- 800	+/- 950	+/-1100			
H7	+10/0	+12/0	+ 15/0	+18/0	+21 /0	+25/0	+30/0	+35/0			
H8	+14/0	+18/0	+22/0	+27/0	+ 33/0	+39/0	+46/0	+54/0			
H9	+25/0	+30/0	+36/0	+43/0	+52/0	+62/0	+74/0	+87/0			
H12	+100/0	+120/0	+150/0	+180/0	+210/0	+250 / 0	+300 / 0	+ 350/ 0			
P9	-6 / -31	-12/-42	-15/-51	-18/-61	-22 / -74	-26 / -86	-32/-106	-37/-124			

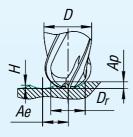
ОСНОВНЫЕ ФОРМУЛЫ ФРЕЗЕРОВАНИЕ

Частота вращения шпинделя n [об/мин]

$$V_p = \frac{\pi \cdot d_l \cdot n}{1000},$$

 V_{p} — скорость резания, м/мин d^{p} — диаметр фрезы, мм

Минутная подача S., [мм/мин]


$$S_{M} = n \cdot S_{z} \cdot Z_{z}$$

n — частота вращения, об/мин; S_z — подача на зуб, мм/зуб; z — число зубьев

РАСЧЕТ ШИРИНЫ ФРЕЗЕРОВАНИЯ ПРИ ЧИСТОВОМ ФРЕЗЕРОВАНИИ СФЕРИЧЕСКИМИ ФРЕЗАМИ

$$Ae = \sqrt{D_r^2 - 4\left[\frac{D_r}{2} - \frac{H}{1000}\right]^2}$$

$$D_r = 2\sqrt{\left(\frac{D}{2}\right)^2 - \left(\frac{D}{2} - Ap\right)^2}$$

Ае – ширина фрезерования, мм

D_r - рабочий диаметр инструмента, мм

Н – теоретическая высота гребешка, мкм (зависит от требуемой шероховатости)

Ар – глубина фрезерования, мм

D – диаметр рабочей фрезы, мм

СВЕРЛЕНИЕ

Скорость резания Vp [м/мин]

$$V_p = \frac{\pi \cdot d_l \cdot n}{1000},$$

n — частота вращения, об/мин d_1 — диаметр сверла, мм

Минутная подача Ѕ,, [мм/мин]

$$S_{M} = n \cdot S_{o}$$
,

n — частота вращения, об/мин S_0 — подача на оборот, мм/об.

СПЛАВЫ

Сплав на ультрамелкозернистой основе с размером зерна 0,3...0,5 мкм. Применяется для фрезерования материалов твёрдостью более 45 HRC. Сплав показывает высокую производительность на черновых и чистовых операциях без вибраций, как при фрезеровании деталей после поверхностной закалки, так и после объемной закалки.

Параметры:

состав 8,5%Co, 91,5%WC твердость HRA 93,2 плотность 14,60 г/см³ предел прочности при изгибе не менее 4800 МПа микротвёрдость по Виккерсу HV30 1830 модуль Юнга 590 ГПа

Область применения:

- чистовая обработка, закалённых и штамповых (высокопрочных) сталей;
- рекомендуется для сферических фрез при контурной обработке сталей твердостью 45...65HRC;
- фрезерование жаропрочных сплавов и литых никельсодержащих сталей без вибраций:
- фрезерование сталей и сплавов на высоких скоростях резания при стабильных условиях.

Сплав на ультрамелкозернистой основе с размером зерна 0,6...0,8 мкм. Сплав представляет собой отличную комбинацию прочности и ударной вязкости. Применяется для изготовления инструмента с острой и прочной режущей кромкой.

Параметры:

состав 10%Co, 90%WC твердость HRA 92,1 плотность 14,45 г/см³ предел прочности при изгибе не менее 4100 МПа микротвёрдость по Виккерсу HV30 1600 модуль Юнга 570 ГПа

Область применения:

- обработка при высоких и низких скоростях резания, высоких подачах, прерывистом резании
- изготовление концевых фрез, свёрл, фасонных фрез.
- обработка стали, чугуна, цветных металлов в т.ч. алюминия, жаропрочных сталей и др.

Сплав на ультрамелкозернистой основе с размером зерна 0,6-0,8 мкм. Применяется для высокопроизводительной обработки различных материалов. Позволяет обеспечить хорошую прочность режущей кромки на операциях черновой обработки при малой жесткости обрабатываемых деталей.

Параметры:

состав 10%Co, 90%WC состав 12%Co, 88%WC микротвёрдость по Виккерсу HV30 1490 плотность 14,21 г/см³ предел прочности при изгибе 4500 МПа модуль Юнга 560 ГПа

Область применения:

- концевые фрезы для черновой обработки с геометрией режущей части типа «стружколом»
- высокопроизводительное черновое фрезерование мягкой и упрочнённой стали.

Порошковая быстрорежущая сталь, произведённая методом горячего изостатического прессования из мелкодисперсного порошка высокой степени чистоты. В результате за счёт диффузионного процесса, происходящего при высоких давлении и температурах,

обеспечиваются виртуальные изотропные свойства.

Параметры:

состав 1,60%С 4,80%Сг 2,00%Мо 5,00%V 10,50%W 8,00%Со Твердость после закалки 62-69 HRC плотность 8,1 г/см³ Прочность на изгиб не менее 3700 МПа

Область применения:

- высоконагруженный режущий инструмент как для обработки сталей, так и для никель- и титансодержащих сплавов.
- фасонные фрезы
- червячные фрезы
- фрезы
- метчики
- спиральные свёрла
- развёртки

Конструкционные и инструментальные легированные стали в соответствии с назначением изделия.

Химический состав и свойства в соответствии с требованиями ГОСТ.

Область применения:

- оправки, удлинители, державки и аналогичная продукция

ПОКРЫТИЯ

Покрытие TiN (2)

Базовое универсальное однослойное покрытие. Химически инертное.

Параметры:

Микротвердость поверхности по Виккерсу $HV_{0.05} = 2300 \pm 300$ Коэффициент трения к 100Cr6 по стали = 0.6 Максимальная температура эксплуатации 500°C

Покрытие TiCN (2)

Высокая твёрдость, хорошее сопротивление износу.

Подходит для обработки сталей склонных к налипанию, твердостью до 42 HRC, цветных металлов.

Параметры:

Микротвердость поверхности по Виккерсу HV0.05 = 3500 \pm 500

Коэффициент трения к 100Cr6 по стали = 0,3

Максимальная температура эксплуатации 400°С

Покрытие ZrN (3)

Повышенная коррозионная стойкость и износостойкость.

Обработка алюминиевых сплавов и цветных металлов. Обработка стекловолокна, нейлона и полимеров.

Параметры:

Микротвёрдость поверхности по Виккерсу HV_{0.05} = 2800 ± 300 Коэффициент трения к 100Cr6 по стали = 0,5 Максимальная температура эксплуатации 600°C

Покрытие AITIN (4)

Высокая твёрдость, высокая стойкость к окислению, низкий коэффициент теплопроводности. Обработка закалённых сталей. Высокопроизводительное резание: с СОЖ, полусухое либо сухое. Великолепно для резания титановых и жаропрочных сплавов. Резание в условиях, когда другие покрытия достигают границы термической и механической допустимой нагрузки.

Параметры:

Микротвёрдость поверхности по Виккерсу $HV_{0.05} = 3300 \pm 300$ Коэффициент трения к 100Cr6 по стали = 0,7 Максимальная температура эксплуатации = 800°C

Покрытие AlTiCrN (5)

Универсальное покрытие. Высокая твердость, высокая стойкость к окислению, сравнительно низкий коэффициент трения. Обработка абразивных или склонных к склеиванию материалов (высококачественная сталь, сплавы алюминия с высоким содержанием кремния). Резание сплавов алюминия и цветных металлов. Черновая и чистовая обработка.

Параметры:

Микротвёрдость поверхности по Виккерсу $HV_{0.05} = 3000 \pm 300$ Коэффициент трения к 100Cr6 по стали = 0,4 Максимальная температура эксплуатации 800°C

Покрытие TiAlSiN (6)

Экстремально высокая стойкость к окислению и износу, высокая твёрдость при повышенной температуре. Резание в экстремальных условиях эксплуатации. Высокопроизводительное резание твердых материалов (сталь>54 HRc). Обработка никельсодержащих сплавов.

Обработка без смазочно-охлаждающей жидкости.

Параметры:

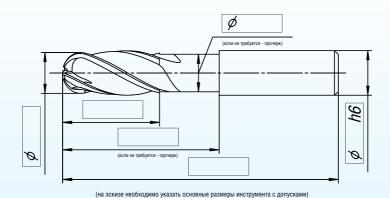
Микротвёрдость поверхности по Виккерсу $HV_{0.05} = 3500 \pm 500$ Коэффициент трения к 100Cr6 по стали = 0,7 Максимальная температура эксплуатации 900°C

Покрытие TiAIN (10)

Высокая твёрдость, высокая стойкость к окислению, низкий коэффициент теплопроводности. Обработка резанием титановых и жаропрочных сплавов. Специально для деталей авиакосмической промышленности.

Параметры:

Микротвёрдость поверхности по Виккерсу $HV_{0.05} = 3300 \pm 300$ Коэффициент трения к 100Cr6 по стали = 0,7 Максимальная температура эксплуатации = 800°C

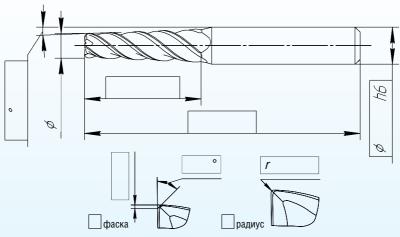


БЛАНК ЗАКАЗА КОНЦЕВЫХ ФРЕЗ С ПЛОСКИМ ТОРЦОМ

Предприятие
Контактное лицо
Контактные данные
(осли не трабуется - прочерк)
(всли на трябувтся - прочарк)
острый угол фаска радиус двойной радиус двойной радиус инструмента с допусками)
Число зубьев: Угол спирали
Хвостовик: Цилиндрический Weldon Другое Другое
Направление спирали: правая правая Направление резания: правая пр
Обрабатываемый материал Твердость
Обработка:
Способ обработки: Стружколом: Да Нет
Подвод СОЖ: Внутренний наружный Покрытие: Да нет
Требуемое количество фрез
Желаемый срок поставки (дней) Подпись дата
Шифр инструмента

БЛАНК ЗАКАЗА КОНЦЕВЫХ ФРЕЗ СО СФЕРИЧЕСКИМ ТОРЦОМ

Предприятие	
Контактное лицо	
Контактные данные	



Число зубьев: Угол спирали	
Хвостовик: Цилиндрический Weldon Другое	эскиз
Направление спирали: правая левая Направление резания: правод (по умолчанию выполняется правая спираль с правым направлением резани:	
Обрабатываемый материал Твердость	
Обработка: — черновая — получистовая — чистовая Наличие литейной корк	и 🗌 да 🔲 нет
Способ обработки: Стружколом: Да Нет	
Подвод СОЖ: Внутренний Наружный Покрытие: Да Нет	
Требуемое количество фрез	
Желаемый срок поставки (дней) Подпись дат	a
Шифр инструмента (заполняется менелжером ЗАО «НИР»)	

БЛАНК ЗАКАЗА КОНЦЕВЫХ КОНИЧЕСКИХ ФРЕЗ

Предприятие	
Контактное лицо	
Контактные ланные	

(на эскизе необходимо указать основные размеры инструмента с допусками)

Число зубьев: Угол спирали
Хвостовик: Цилиндрический Weldon Другое другое
Направление спирали: правая левая Направление резания: правая левая (по умолчанию выполняется правая спираль с правым направлением резания)
Обрабатываемый материал Твердость
Обработка: 🔲 черновая 🔲 получистовая 🔲 чистовая 💮 Наличие литейной корки 🔲 да 🔲 нет
Способ обработки: Стружколом: Да Нет
Подвод СОЖ: Внутренний Паружный Покрытие: Да Нет
Требуемое количество фрез
Желаемый срок поставки (дней) Подпись дата
Шифр инструмента

БЛАНК ЗАКАЗА КОНЦЕВЫХ КОНИЧЕСКИХ ФРЕЗ

Предприятие	
Контактное лицо	
Контактные данные	

Число зубьев:	Угол спир	али			
Хвостовик: Цилиндрический	Weldo	on	Другое	e 🗆 📖	эскиз
Направление спирали: Правая		Направлени ыполняется правая спираль с п			я Плевая
Обрабатываемый материал		Твердость			
Обработка: Черновая Пполучи	істовая 🔲 чист	овая Налі	ичие литей	ной корки [да нет
Способ обработки: ССОЖ	Сухой	Стружколом:	Да	Нет	
Подвод СОЖ: Внутренний	Паружный	Покрытие:	Да	нет	
Требуемое количество фрез					
Желаемый срок поставки	(дней)	Подпись		дата	
Шифр инструмента		NIGOTOG MOUODIVODOM 2AO "HIM	2\		

БЛАНК ЗАКАЗА СПЕЦИАЛЬНЫХ ФРЕЗ

Предприятие	
Контактное лицо	
Контактные данные	

3GKM3

(на эскизе необходимо указать основные размеры инструмента с допусками или эскиз получаемой поверхности с размерами и допусками)

Число зубьев:	Угол спир	али	
Хвостовик: Цилиндрический	Weldo	on D	ругое эскиз
Направление спирали: Правая		Направление рез	
Обрабатываемый материал		Твердость	
Обработка: Черновая Пполучи	1стовая чист	овая Наличие л	питейной корки 🔲 да 🔲 нет
Способ обработки: С с СОЖ	Сухой	Стружколом:	да Пнет
Подвод СОЖ: Внутренний	Паружный	Покрытие: Д	а Пнет
Требуемое количество фрез			
Желаемый срок поставки	(дней)	Подпись	дата
Шифр инструмента		іняется менеджером ЗАО «НИР»)	

БЛАНК ЗАКАЗА СВЕРЛ

Предприятие				
Контактное лицо Контактные данные				
© © © © © © © © © © © © © © © © © © ©	94			
Угол спирали				
Хвостовик: Цилиндрический				
Whistle Notch	Другое эскиз			
Направление спирали: правая левая (по умолчанию выполняется правое направление резания)				
Обрабатываемый материал				
Твердость				
Отверстие: Сквозное Глухое				
Способ обработки: Сс СОЖ сухой				
Подвод СОЖ: Внутренний Паружный				
Покрытие: Да Пнет				
Требуемое количество сверл				
Желаемый срок поставки (дней)	одпись дата			
Шифр инструмента(заполняется мене	еджером ЗАО «НИР»)			

БЛАНК ЗАКАЗА СПЕЦИАЛЬНЫХ СВЕРЛ

Предприятие	
Контактное лицо	
Контактные данные	

3 G K M S

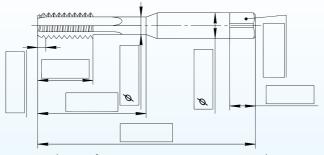
(на эскизе необходимо указать основные размеры инструмента с допусками или эскиз получаемой поверхности с размерами и допусками) Угол спирали Число зубьев: Цилиндрический Хвостовик. Другое эскиз Направление спирали: правая (по умолчанию выполняется правое направление резания) Обрабатываемый материал Твердость Отверстие: сквозное лухое Способ обработки: с СОЖ сухой Подвод СОЖ: внутренний наружный Покрытие: Требуемое количество сверл _ Желаемый срок поставки _ (дней) Подпись_ Шифр инструмента_ (заполняется менеджером ЗАО «НИР»)

БЛАНК ЗАКАЗА ЗЕНКЕРОВ И РАЗВЕРТОК

Предприятие				
Контактное лицо				
Контактные дани	ные			
Ø OTB.	(на эски	зе необходимо указать основн	ые размеры инструмента с допусках	94
Угол спирали	Число :	зубьев:		
Хвостовик: Цил	линдрический	С квадратом		Ψ
Направление спиралі	и: Правое	левое		
Направление резания	я: Правое ется правое направление ре	левое		
Тип инструмента:	ручной	 машинный		
Обрабатываемый мат	гериал			
Твердость				
Отверстие:	Сквозное	Глухое		
Способ обработки:	□с СОЖ	Сухой		
Подвод СОЖ:	Внутренний	П наружный		
Покрытие:	Да	нет		
Требуемое количеств	о инструмента			
Желаемый срок пост	авки	(дней)	Подпись	дата
Шифр инструмента_		(заполняє	ется менеджером ЗАО «НИР»)	

БЛАНК ЗАКАЗА СПЕЦИАЛЬНЫХ ЗЕНКЕРОВ И РАЗВЕРТОК

Предприятие	
Контактное лицо	
Контактные ланные	


GGKM3

(на эскизе необходимо указать основные размеры инструмента с допусками или эскиз получаемой поверхности с размерами и допусками)

угол спирали	число	зуоьев:		
Хвостовик: Цил	линдрический	С квадратом	-	
Направление спиралі	и: Правое	левое	\	
Направление резания (по умолчанию выполняется пр		левое равлением резания)		
Тип инструмента:	ручной	 машинный		
Обрабатываемый мат	гериал			
Твердость				
Отверстие:	Сквозное	Глухое		
Способ обработки:	□с сож	Сухой		
Подвод СОЖ:	Внутренний	П наружный		
Покрытие:	Да	нет		
Требуемое количеств	о инструмента			
Желаемый срок пост	авки	(дней)	Подпись	дата
Шифр инструмента_				

БЛАНК ЗАКАЗА МЕТЧИКОВ

Предприятие	
Контактное лицо	
Контактные ланные	

(на эскизе необходимо указать основные размеры инструмента с допусками)

Угол спирали	Число :	зубьев:	Резьба:	
Наружные центра допу	скаются: Не	т Пда	на хвостовике	
Направление спирали:	Правое	левое		
Направление резания: (по умолчанию выполняется права	правое ая спираль с правым напр		i)	
Тип инструмента:	ручной	машинн	ый	
Материал метчика:	HSS	HSS-E	□ нм	
Обрабатываемый мате	риал			
Твердость				
Отверстие:	Сквозное	Пглухое	1	
Способ обработки:	□с СОЖ	Сухой	Смазка вручную	
Подвод СОЖ:	Внутренний	П наруж	кный	
Покрытие:	Да	Пнет		
Требуемое количество	инструмента			
Желаемый срок постав	вки	(дней)	Подпись	дата
Шифр инструмента			(заполняется менеджером ЗАО «НИР»)	

БЛАНК ЗАКАЗА СПЕЦИАЛЬНЫХ МЕТЧИКОВ

Предприятие	
Контактное лицо	
Контактные данные	

(на эскизе необходим	о указать основные размеры инструмента с допусками или эскиз получаемой поверхности с размерами и допусками)						
Угол спирали	Число зубьев: Резьба:	_					
Наружные центра допу	искаются: Пнет Да Пна хвостовике Внутренние(не для НМ)						
Направление спирали:	правое правое						
Направление резания: правое левое (по умолчанию выполняется правая спираль с правым направлением резания)							
Тип инструмента:	ручной машинный						
Материал метчика:	□HSS □HSS-E □HM						
Обрабатываемый материал							
Твердость		_					
Отверстие:	Сквозное Глухое						
Способ обработки:	С СОЖ Сухой Смазка вручную						
Подвод СОЖ:	внутренний наружный						
Покрытие:							
Требуемое количество инструмента							
Желаемый срок поста	вки (дней) Подпись дата						
Шифр инструмента	(заполняется менелжером ЗАО «НИР»)						

БЛАНК ЗАПРОСА РЕЖИМОВ РЕЗАНИЯ

Предприятие	
Контактное лицо	
Контактные ланные	

361/1/3

(эскиз обработки с указанными требованиями к качеству поверхности и размерами) Шифр инструмента: _ Модель станка: _ Мощность шпинделя, кВт _____ Максимальное число оборотов шпинделя, об/мин _ Обрабатываемый материал _ Твердость _ Тип заготовки: отливка прокат поковка/штамповка **」предв.обработанная** ____черновая ____получистовая ____чистовая Наличие литейной корки эмульсия [⊿масло Швода I сжатый воздух Охлаждение: цанговый термопатрон Гидропластовый Тип патрона: Стабильность резания и жесткость оснастки: хорошая удовлетворительная Примечания _

Дата_

Подпись_

ЗАМЕТКИ			

152903, Россия, Ярославская обл. г. Рыбинск, ул. Авиационная, д. 1 Тел. +7 (4855) 29-26-00, факс +7 (4855) 29-26-50 www.zao-nir.com, info@zao-nir.com

